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The velocity distribution of dilute suspensions of heavy particles in gas–solid turbulent
flows is investigated. A statistical approach – the mesoscopic Eulerian formalism
(MEF) – is developed in which an average conditioned on a realization of the turbu-
lent carrier flow is introduced and enables a decomposition of the instantaneous
particle velocity into two contributions. The first is a contribution from an underlying
continuous turbulent velocity field shared by all the particles – the mesoscopic
Eulerian particle velocity field (MEPVF) – that accounts for all particle–particle
and fluid–particle two-point correlations. The second contribution corresponds to a
distribution – the quasi-Brownian velocity distribution (QBVD) – that represents a
random velocity component satisfying the molecular chaos assumption that is not
spatially correlated and identified with each particle of the system. The MEF is used
to investigate properties of statistically stationary particle-laden isotropic turbulence.
The carrier flow is computed using direct numerical simulation (DNS) or large-eddy
simulation (LES) with discrete particle tracking employed for the dispersed phase.
Particle material densities are much larger than that of the fluid and the force of the
fluid on the particle is assumed to reduce to the drag contribution. Computations
are performed in the dilute regime for which the influences of inter-particle collisions
and fluid-turbulence modulation are neglected. The simulations show that increases
in particle inertia increase the contribution of the quasi-Brownian component to
the particle velocity. The particle velocity field is correlated at larger length scales
than the fluid, with the integral length scales of the MEPVF also increasing with
particle inertia. Consistent with the previous work of Abrahamson (1975), the MEF
shows that in the limiting case of large inertia, particle motion becomes stochastically
equivalent to a Brownian motion with a random spatial distribution of positions
and velocities. For the current system of statistically stationary isotropic turbulence,
both the DNS and LES show that the fraction of the kinetic energy residing in the
mesoscopic field decreases with particle inertia as the square root of the ratio of the
total particulate-phase kinetic energy to that of the fluid.
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France, p.fevrier@libertysurf.fr
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1. Introduction
The dynamical evolution of small heavy particles suspended in turbulent flows con-

tinues to receive attention because of its relevance to technologies governing a broad
range of industrial and naturally occurring systems. Examples include the combustion
of pulverized coal or liquid sprays, transport of particulate solids, gas-phase reac-
tions controlled by particulate catalysts, dust storms, and atmospheric dispersal of
pollutants. In each of these areas an increased understanding of the phenomena
that drive the interactions between the particle cloud and turbulence is needed to
ultimately improve the design of engineering devices in which these flows occur.

An overview of some of the important mechanisms governing turbulent gas–solid
flows has been provided by Sommerfeld (2000), summarizing complex interactions
governing particle transport by fluid turbulence, preferential concentration, inter-
particle and wall–particle collisions, and two-way coupling. As described by
Sommerfeld (2000), particle inertia plays an important role, as it dictates the inter-
actions between the particle and turbulent scales of the carrier flow over the entire
spectrum of length and time scales. Relevant to the present contribution are investiga-
tions of the spatial features of the particulate phase, which appear useful in
understanding and modelling many of the important processes governing turbulent
two-phase flows.

Much previous work in gas–solid turbulent flows has focused on the interactions
between the continuous and dispersed phases that result in significant structure of the
number density field. Structural interactions that lead to preferential concentration
of particles into regions of low vorticity and/or high strain rate, for example, can
influence the statistics of the particulate phase. Février (2000) showed a correlation
between the local instantaneous distribution of inertial particles and the turbulent
fluid velocity field that results in an increase in the fluid Lagrangian integral time
scale sampled along the particle path. This in turn leads to a greater dispersion
of heavy particles at long diffusion times compared to the fluid. Particle settling in
isotropic turbulence provides another example in which the increase in the settling
velocity of small heavy particles is directly connected to the correlation between the
spatial distribution of the particles and the fluid velocity (Maxey 1987; Wang &
Maxey 1993).

In addition to transport, inter-particle collisions and turbulence modulation by
particles in dilute gas–solid flows provide other examples in which the spatial
characteristics of the particle distribution are important in increasing understanding
and developing improved phenomenological models. Previous studies have shown
that structure in the particle number density (e.g. preferential concentration) has an
important effect on collision rates in gas–solid flows (e.g. see Sundaram & Collins
1997; Wang, Wexler & Zhou 2000; Reade & Collins 2000). These and other studies
show that preferential concentration resulting in locally large number densities
increases collision rates over that which would be obtained for a random particle
distribution. Sundaram & Collins (1997) accounted for the influence of the spatial
distribution on collision frequencies via introduction of the radial distribution function
at contact (see also Wang et al. 2000).

In regimes of significant mass loading such that the carrier flow is modified by mo-
mentum exchange with the particles, spatial characteristics of the particle distribution
again appear to be an important factor. Previous numerical simulations using simple
force-coupling models indicate that the distribution of particles in the flow can have
a strong effect on the spectral content of the fluid turbulence. Simulations of isotropic
turbulence have shown a non-uniform attenuation of the fluid energy spectrum for
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parameter combinations in which there are strong structural interactions between the
particles and turbulent fluid flow (Squires & Eaton 1991a; Elghobashi & Truesdell
1993; Boivin, Simonin & Squires 1998; Sundaram & Collins 1999).

1.1. The partitioning effect of particle inertia

Important to the present contribution is that interactions between the dispersed and
continuous phases not only structure the particle number density, but also lead to
correlation of the velocities of neighbouring particles. As discussed in Abrahamson
(1975), it seems legitimate to assume that the two-particle velocity distribution will
have the following asymptotic behaviours. For small-inertia particles, neighbouring
velocities will be spatially correlated through the interactions with the same local
fluid flow, an effect apparent in the velocity vectors of small-inertia particles shown
in figure 1(a). The figure shows a single plane from calculation of particle-laden
isotropic turbulence with the gas-phase computed using direct numerical simulation
(DNS) and Lagrangian tracking for the dispersed phase (details of the calculation
are presented in § 4).

In contrast, for large-inertia particles with response times that are long compared
to the fluid turbulence macroscales, neighbouring particle velocities are uncorrelated
since these particles maintain a stronger connection (memory) to their interactions
with very distant, and independent, turbulent eddies. This effect is illustrated in
figure 1(b) in which velocity vectors of large-inertia particles are shown in the same
plane and at the same instant as for the low-inertia particles in figure 1(a). As the figure
shows, velocity vectors of neighbouring particles appear uncorrelated. In the large-
inertia limit, statistics of the particle velocity distribution will satisfy the assumption
of molecular chaos and can be described using kinetic theory (e.g. see Reeks 1977).
An important consequence is that in the large-inertia limit, the particle velocity
distribution cannot be assumed to correspond to a spatially continuous velocity
field. The random nature of the particle motion will lead to a crossing of individual
trajectories (obviously inducing a collision in physical systems).

The above small- and large-inertia limit cases illustrate that substantially different
spatial features in the particle velocity are possible, with these differences depending
on particle inertia. In the scalar limit, the spatial correlation function between any two
particle velocities should be accurately modelled by a decaying exponential, analogous
to the correlation describing the fluid turbulence (Hinze 1975). On the other hand, in
the limit of very large inertia particle motion becomes stochastically equivalent to a
Brownian motion with independent random velocities, even for those particles passing
close to each other (Abrahamson 1975; Reeks 1977). For intermediate values of the
particle response time, the particle velocity distribution should be expected to exhibit
spatial features with characteristics representative of these two limiting regimes.

In order to develop an improved understanding of the physical mechanisms
associated with the rather different particle dynamics depicted in each limiting
case illustrated above, an approach is developed in this manuscript based on the
conjecture that in dilute gas–solid turbulent flows, spatial velocity correlation between
separate particles is only induced via particle interactions with the turbulent fluid motion.
Specifically, inter-particle collisions or hydrodynamic interactions are assumed to not
induce any correlation between the velocities of neighbouring particles.

The approach – the mesoscopic Eulerian formalism (MEF) – is based on the pre-
sumed chaotic behaviour of inertial particles interacting with a given realization of the
gas-phase turbulence. Indeed, it is assumed that small deviations in the initial condi-
tions of the particles (position and velocity) are quickly magnified. For finite time
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Figure 1. Instantaneous fluid and particle velocity vectors from a single plane of a direct
numerical simulation of forced isotropic turbulence with Lagrangian particle tracking (see § 4).
The longitudinal integral length scale of the fluid turbulence is L

f
F ≈ 0.02Lbox. (a) Particle

relaxation time is 0.13TL where TL is the fluid Lagrangian integral timescale. (b) Particle
relaxation time is 2.17TL. In both (a) and (b) the particle positions are shown by the circles,
the symbol size in each frame and particle velocity vectors in (b) are exaggerated for clarity.

typically larger than the particle response time and the fluid turbulence time macro-
scale, statistical properties of the dispersed phase, including the spatial correlations
between neighbouring particles, become independent of the initial conditions and
will be fully controlled by the interactions with the turbulent fluid flow. This chaotic
behaviour of the particles in a given realization of the turbulent flow is connected
to the case of fluid elements, e.g. as discussed in Falkovich, Gawedzki & Vergassola
(2001), though this feature should be enhanced due to particle inertia (e.g. see
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Wang, Burton & Stock (1991). Indeed, for small separations, even smaller than
the Kolomogorov length scale, particle inertia should maintain the influence of the
interactions with fluid elements at larger separation which are only partially correlated.
Thus, multiple particle trajectories can pass through the same point at the same time
for the given fluid flow realization.

1.2. Objective and overview

The main objective of the present study is to develop a more thorough understanding
of the particle velocity spatial distribution. The focus of this effort is on gas–solid
turbulent flows with a mono-disperse distribution of particles with material densities
much larger than the fluid (ρp � ρ) and with particle diameters smaller than the
smallest turbulent length scales of the fluid flow. Particle concentrations are dilute,
effects of turbulence modulation and inter-particle collision are not within the scope
of this study, and an extension of the approach developed in this manuscript to
account for collisional effects and two-way coupling is summarized in the conclusion.

The approach is based on analysis and numerical simulation. In the first part
of the manuscript a theoretical formalism is introduced to describe the local and
instantaneous particle dynamics in an Eulerian frame of reference – referred to as
the mesoscopic Eulerian formalism (MEF). In the second part of the paper, the
MEF is used to study the spatial properties of the particle velocity distribution.
The computations are based on direct numerical simulation (DNS) or large-eddy
simulation (LES) of statistically stationary isotropic turbulence and with a Lagrangian
treatment of the dispersed phase.

The analysis in Part I (§ § 2 and 3) based on the mesoscopic Eulerian formalism is
a systematic approach that enables assessment of two contributions to the particle
velocity field:

1. A turbulent contribution from an underlying continuous velocity field of the
particulate phase that is local and time-dependent. This velocity is described in
Eulerian coordinates and referred to as the mesoscopic Eulerian particle velocity field
(MEPVF). The MEPVF is shared by all the particles and accounts for interactions
with the entire spectrum of fluid turbulent motions.

2. A velocity distribution satisfying the assumption of molecular chaos, i.e. not
correlated in space, and referred to as the quasi-Brownian velocity distribution
(QBVD). A Lagrangian coordinate system is appropriate for the QBVD as it is
associated with each particle separately.

Analytical relations involving the MEPVF and QBVD are derived and among the
important results developed is that the MEPVF accounts for all particle–particle
and fluid–particle two-point velocity correlations, while the QBVD is not correlated
spatially, neither between separate particles, nor with the fluid velocity field. Thus, the
approach presented in the first part of the paper formally shows that a portion of the
particle velocity corresponds to a distribution that satisfies, partially, the assumption
of molecular chaos, i.e. neighbouring particle velocities are completely independent.
In the current context, the ‘molecular chaos assumption’ refers only to the velocity
distribution, not the distribution of particle positions and also does not imply a
Gaussian distribution of the particle velocities.

Following the development of the analytical relations, results from numerical
simulations of statistically stationary, particle-laden isotropic turbulence are presented.
The simulations are based on DNS and LES of the gas-phase turbulent carrier flow
and Lagrangian calculation of the particle trajectories. A numerical approach is
introduced in order to perform an a priori application of the MEF. Important in this
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process is validation of the numerical procedures in order to accurately analyse the
MEPVF and the QBVD, as well as one- and two-point statistics of the particulate
flow. The numerical simulations are used to investigate the influence of particle inertia
on properties of the particle velocity distribution. Transport equations that describe
the evolution of the MEPVF are derived and used to shed light on properties
of the particle velocity field; one of the important outcomes is that the transport
equations for the MEPVF contain a contribution from the quasi-Brownian field via
a kinetic stress tensor. This tensor represents diffusion and pressure corresponding to
the important physical characteristic that within any volume Ω having dimensions
comparable with or smaller than the smallest length scales of the turbulence,
separate particles will possess different velocities because of separate fluid interaction
histories.

Part I. Development of the Mesoscopic Eulerian Formalism

2. Background
In this section, statistics of the particle velocity distribution are developed, both

for the Lagrangian temporal correlation and Eulerian two-point (spatial) correlation.
The purpose is to illustrate the effect of particle inertia using conventional single-
particle (in time) and two-particle (in space) measures. This overview will highlight
the two contributions to the particle velocity distribution, one coming from a spatially
correlated and continuous velocity field possessed by all the particles and the other a
random contribution associated separately with each particle. This overview provides
the context for the work and motivation for considering the spatial characteristics of
the particle velocity distribution in turbulent flows and, in particular, the framework
for development of the mesoscopic Eulerian formalism in § 3. The results presented in
this section have been obtained from large-eddy simulations of statistically stationary,
isotropic turbulence for the fluid together with Lagrangian calculation of particle
trajectories. Details of the calculations are provided in Part II of the manuscript
(§ § 4–6).

2.1. Statistical descriptors of the particle velocity distribution

The particle-phase system is classically described in terms of the one-particle
probability distribution function (p.d.f.) f (1)

p (x, cp, t) defining the local probable
number of particle centres at the position x, with a given translation velocity vp = cp ,
at time t . The p.d.f. f (1)

p can be obtained by ensemble averaging over a very large
number, Nf &p , of two-phase flow realizations, Hf &p ,

f (1)
p (x, cp, t) = lim

Nf &p→∞

 1

Nf &p

∑
Nf &p

Np∑
m=1

W (m)
p (x, cp, t, Hf &p)

 (2.1)

where W (m)
p (x, cp, t, Hf &p) = δ(x − x(m)

p (t))δ(cp − v(m)
p (t)) is the so-called refined-grid

p.d.f. (e.g. see Reeks 1991), δ(a) is the Dirac function, and Np is the (fixed) number
of particles in any realization.

Using f (1)
p , single-point macroscopic quantities can be defined. The mean particle

number density is

np(x, t) =

∫
f (1)

p (x, cp, t) dcp, (2.2)
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and the mean particle velocity is

Vp,i(x, t) =
1

np(x, t)

∫
cp,if

(1)
p (x, cp, t) dcp. (2.3)

Note that, as particles within the system are indistinguishable, it is also possible to
use the normalized probability distribution function F(1)

p (x, cp, t) computed for any
given particle m from the realizations Nf &p ,

F(1)
p (x, cp, t) = lim

Nf &p→∞

 1

Nf &p

∑
Nf &p

W (m)
p (x, cp, t, Hf &p)

 . (2.4)

These two statistical descriptions are obviously linked via f (1)
p = NpF(1)

p . In this paper

statistics will be defined using both the p.d.f. f (1)
p and F(1)

p . Using the normalized
p.d.f. the mean particle velocity is then

Vp,i(x, t) =

〈
v

(m)
p,i (t)δ

(
x − x(m)

p (t)
)〉〈

δ
(
x − x(m)

p (t)
)〉

=
〈
v

(m)
p,i (t)|x = x(m)

p (t)
〉
, (2.5)

where the velocity of particle m is denoted v
(m)
p,i (t) and the second line is a shorthand

used to reinforce the dependence of the average on the particle position. The averaging
operator 〈·〉 is defined over a large number of two-phase flow realizations,

〈·〉 = lim
Nf &p→∞

 1

Nf &p

∑
Nf &p

(·)

 . (2.6)

Note that when there is no ambiguity a simpler notation than introduced above
can be used to denote averages, e.g. as taken with respect to a ‘test particle’ having
velocity vp and position xp . This notation is used in the following and, for example,
the mean particle velocity is then expressed as

Vp,i(x, t) = 〈vp,i(t)|x = xp(t)〉. (2.7)

The fluctuating particle velocity vector is defined as

v′
p(t) = vp(t) − V p(xp(t), t). (2.8)

Using the above relations, the macroscopic particle kinetic energy is

q2
p(x, t) = 1

2
〈v′

p,i(t)v
′
p,i(t)|x = xp(t)〉, (2.9)

the fluid–particle velocity covariance, defined from the fluid velocity fluctuation at the
particle location, is

qfp(x, t) = 〈u′
i(x, t)v′

p,i(t)|x = xp(t)〉, (2.10)

and the fluid turbulent kinetic energy sampled along the particle trajectory is

q2
f @p(x, t) = 1

2
〈u′

i(x, t)u′
i(x, t)|x = xp(t)〉. (2.11)

Note that the fluid velocity u′
i is defined at the particle centre and represents the value

undisturbed by the presence of the particle but accounts for the disturbances created
by the other particles in the system as well as the underlying turbulent motion of the
carrier fluid.
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The above measures are typical quantities extracted from one-particle p.d.f.s and
used to analyse some of the main features of particle motion in turbulent flows.
For two-point correlations, Sundaram & Collins (1994, 1999) developed a two-field
formalism to calculate two-point correlations and corresponding spectral densities.
The generic two-point correlations involve two contributions arising from intra-
particle correlations and inter-particle correlations, taking into account the particle
diameter. The inter-particle correlation is a function of the location of the centres of
two separate particles and then defined for particle separations larger than the particle
diameter. In the present manuscript, attention is restricted to two-point correlations
conditioned by the particle centres, i.e. only inter-particle correlations are considered.
To assess the two-point statistics of the particle phase, the probability distribution
function f (2)

p associated with the motion of the centres of any two separate particles
is considered,

f (2)
p (x, cp, x+, c+

p , t) = lim
Nf &p→∞

 1

Nf &p

∑
Nf &p

Np∑
m=1

Np∑
n=1

W (m,n)
p (x, cp, x+, c+

p , t, Hf &p)

,

(2.12)

where W (m,n)
p is the refined-grid p.d.f. for the motion of two particles m and n (m 	= n),

W (m,n)
p (x, cp, x+, c+

p , t, Hf &p) = δ
(
x − x(m)

p (t)
)
δ
(
cp − v(m)

p (t)
)

× δ
(
x+ − x(n)

p (t)
)
δ
(
c+
p − v(n)

p (t)
)
. (2.13)

Note that the pair probability distribution f (2)
p (x, cp, x+, c+

p , t) is restricted to separate
particles and consequently the summation in (2.12) written for m 	= n.

As for the one-particle statistical description, two-particle statistics can be analo-
gously defined from the normalized probability distribution function F(2)

p ,

F(2)
p (x, cp, x+, c+

p , t) = lim
Nf &p→∞

 1

Nf &p

∑
Nf &p

W (m,n)
p (x, cp, x+, c+

p , t, Hf &p)

, (2.14)

from which follows f (2)
p = Np(Np − 1)F(2)

p .
The two-point velocity correlations of any two (separate) particles of the system

can now be defined using the two-particle p.d.f. (2.12). The reader is referred to
the detailed expressions in the Appendix. The particle–particle velocity correlation is
expressed as

R
pp
ij (x, x + r, t) =

〈
v

′(m)
p,i (t)v′(n)

p,j (t)
∣∣x = x(m)

p (t); x + r = x(n)
p (t)

〉
. (2.15)

The fluid–particle velocity correlation is defined using the fluid fluctuating velocity at
the particle centre,

R
fp
ij (x, x + r, t) =

〈
u′

i(x, t)v′(n)
p,j (t)

∣∣x = x(m)
p (t); x + r = x(n)

p (t)
〉
, (2.16)

R
pf
ij (x, x + r, t) =

〈
v

′(m)
p,i (t)u′

j (x + r, t)
∣∣x = x(m)

p (t); x + r = x(n)
p (t)

〉
, (2.17)

and the fluid–fluid velocity correlation at the particle position,

R
ff
ij (x, x + r, t) =

〈
u′

i(x, t)u′
j (x + r, t)

∣∣x = x(m)
p (t); x + r = x(n)

p (t)
〉
. (2.18)

Note that the correlations given by (2.15) to (2.18) could not be defined for
separations smaller than the particle diameter when accounting for inter-particle
collision effects because the pair probability for |x − x+| <dp is equal to zero. Finally,
following Sundaram & Collins (1999), the radial distribution function gpp(x, x + r, t)



Partitioning of particle velocities in gas–solid turbulent flows 9

3R
Lp (τ

)/(
2q

2 p)

t/TL

0  2  4 6 8

0.2

0.4

0.6

0.8

1.0

Figure 2. Influence of particle inertia on the Lagrangian temporal velocity correlation function
3R

p
L(τ )/(2q2

p) of finite-inertia particles suspended in isotropic turbulence. The fluid flow is
computed using LES at ReL = 700 (see § 4 for details of the computations). Curves correspond
to different ratios of the particle relaxation time to fluid Lagrangian integral time scale: �,
τF
fp/TL = 0.05; +, τF

fp/TL = 0.3; �, τF
fp/TL =1.47; 
, τF

fp/TL = 3.4; ∗, τF
fp/TL = 4.83.

is introduced, giving the normalized expectation of finding a second particle at a
distance r from any given particle,

gpp(x, x + r, t) =

〈
δ
(
x − x(m)

p (t)
)
δ
(
x + r − x(n)

p (t)
)〉〈

δ
(
x − x(m)

p (t)
)〉〈

δ
(
x + r − x(n)

p (t)
)〉 . (2.19)

In statistically stationary homogeneous turbulence, the above one- and two-point
statistics do not depend on spatial coordinates x nor on time t . In addition, in
isotropic flow, the two-point velocity correlations can be written in terms of their
longitudinal and transverse components, e.g. for the longitudinal particle–particle
correlations

F pp(r) = 1
3

〈
v

′(m)
p,i (t)v′(n)

p,i (t)
∣∣x = x(m)

p (t); x + rei = x(n)
p (t)

〉
, (2.20)

with summation over the repeated index i, and where ei is the unit vector in the
i-direction. The transverse correlation is

Gpp(r) = 1
3

〈
v

′(m)
p,i (t)v′(n)

p,i (t)
∣∣x = x(m)

p (t); x + rej = x(n)
p (t)

〉
, (2.21)

with j 	= i. Analogous expressions may be written for the fluid–particle two-point
longitudinal velocity correlations F fp(r) and F pf (r) following (2.16) and (2.17) with
F fp(r) = F pf (r) in isotropic turbulence. It is also important to point out that isotropy
of the particle fluctuating motion will be assured only when there is no drift between
the phases (as would occur with gravitational settling, for example).

2.2. Lagrangian temporal correlations

Figure 2 depicts the one-particle Lagrangian temporal correlation of particle velocities
normalized by the turbulent kinetic energy of the particulate phase. The Lagrangian
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velocity correlations are defined classically along particle trajectories as

R
p
L(τ ) = 1

3
〈v′

p,i(t)v
′
p,i(t + τ )〉p (2.22)

where 〈·〉p is the averaging operator associated with the particle phase, the correlation
(2.22) can be computed by averaging over all realizations for any given particle.
Figure 2 shows the well-known effect of particles becoming less correlated to their
initial velocity with increasing time. The dependence of the Lagrangian velocity
correlation on particle inertia is also well known and using the theory of Tchen
(1947), the Lagrangian integral time scale, T

p
L , of the particles depends on the particle

relaxation time via

T
p
L = T

f @p
L + τF

fp, (2.23)

where τF
fp is defined in § 1.1 and represents the relaxation time averaged over the

particles, accounting for nonlinear drag (Simonin 1991), and T
f @p
L is the fluid integral

time scale sampled along particle trajectories.
For small-inertia particles approaching the scalar limit (TL � τF

fp), T
f @p
L tends to

the fluid Lagrangian integral time scale TL. For large-inertia particles the time scale
T

f @p
L tends to the fixed-point Eulerian integral time scale of the fluid turbulence TE

(e.g. see Reeks 1977; Pismen & Nir 1978). For intermediate inertia, T
f @p
L may be

slightly larger than TL because of the correlation between the particle distribution and
regions of the fluid velocity field possessing larger space–time coherence (Février 2000).
Typically, the integral time scale T

p
L increases with particle inertia, illustrating the more

sluggish change with time of particle velocities, more significant memory of previous
motion, and longer times required for adaption of particles to new fluid velocity
conditions.

2.3. Eulerian spatial velocity correlations

Shown in figure 3 is the longitudinal velocity correlation between two particles at
time t , F pp(r), normalized by the particle turbulent kinetic energy q2

p . For low-
inertia particles approaching the scalar limit and adopting the same motion as
fluid elements, the longitudinal two-point velocity correlation function F pp(r) of the
particle velocities should approach that of the fluid, F ff (r), and should be reasonably
well approximated by the exponential exp(−r/L

f
F ) (Hinze 1975) where L

f
F is the

longitudinal integral length scale of the fluid turbulence. In the limit r/L
f
F tending

to zero, F pp(r) = F ff (r) → 2q2/3. Note that the condition r/L
f
F → 0 implies that the

distance r between the centres of two particles is smaller than any length scale of
the fluid turbulence, but larger than the particle diameter. This limit can be defined
since the particle diameter is assumed smaller than the Kolmogorov length scale of
the turbulent fluid flow. For r � L

f
F , the two particles under consideration are in

fluid velocity regions separated by distances much larger than the integral length
scale of the turbulence and therefore the spatial velocity correlation tends to zero.
Figure 3 shows that for light particles (τF

fp/TL = 0.05 in the figure), the two-point
velocity correlations are consistent with the limiting case of fluid elements, i.e. for
r/L

f
F → 0, F pp(r) → 2q2/3. As for the fluid turbulence, when the distance r increases,

the particle velocity correlation decreases monotonically. For r � L
f
F , the spatial

velocity correlation is tending towards zero.
For increasing particle inertia, figure 3 shows that the distribution of particle

velocities remains spatially correlated, as also shown by Sundaram & Collins (1999)
in decaying turbulence, since particles share the same fluid velocity field. Nevertheless,
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Figure 3. Influence of particle inertia on the longitudinal Eulerian spatial correlation function
3Fpp(r)/(2q2

p) of finite-inertia particles suspended in isotropic turbulence (same conditions as
figure 2).

an important result is that in the limit r/L
f
F → 0, the condition F pp(r) → 2q2

p/3 is not

satisfied, but instead the two-point correlation F pp(r) remains smaller than 2q2
p/3.

This feature illustrates that a portion of the particle velocity corresponds to a
distribution which is not spatially correlated. Thus, by analogy to the kinetic theory of
dilute gases, this contribution is referred to as the quasi-Brownian part of the particle
velocity, or quasi-Brownian velocity distribution. Note that if particle motion were
completely analogous to molecular motion in a dilute system, the particle positions
(in addition to the velocities) would be uncorrelated and the velocity distribution
would be Gaussian. For a dilute particle-laden turbulent flow the assumption of
molecular chaos implies that the QBVD is not spatially correlated, though there is no
requirement a priori that the velocity distribution be Gaussian. It is again important
to note that the interactions between the particles and fluid turbulent motions which
lead to the QBVD are sensitive to particle inertia.

As also shown by figure 3, for increasing inertia, particle velocities may remain
correlated even for quite large separations. In contrast, for small separations, the two-
particle velocity correlation is decreasing appreciably with increases in particle inertia.
This feature illustrates that the quasi-Brownian velocity makes a larger contribution
to the particle velocity for increasing response time. Physically, this feature implies
that the trajectories of neighbouring particles become independent for very large
inertia, approximating the motion of molecules in dilute gases. In this regime, the
corresponding particle velocity distribution tends towards Gaussian, consistent with
the previous works of Abrahamson (1975) and Reeks (1977).

3. Mesoscopic Eulerian formalism
The aim of this section is to provide a theoretical formalism in order to separately

assess the spatially correlated continuous field and the quasi-Brownian distribution of
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the particle velocity. The assumption underlying the present formalism is that in dilute
two-phase flows any spatial correlation in the dispersed-phase motion is induced
via particle interactions with the surrounding fluid motion. Note that this rules
out dense regimes, which are not considered, in that interactions between particles
(e.g. hydrodynamic effects and inter-particle collisions) may also lead to a spatially
correlated particle velocity distribution. Based on the assumption that particle-phase
velocity correlations arise due to interactions with the fluid, it is appropriate to
develop statistical measures conditioned on a given fluid velocity realization, denoted
here as Hf . For the particulate phase this procedure will incorporate information
for all scale interactions with the fluid flow and take into account all fluid–particle
and particle–particle correlations. A substantial advantage of this approach is that
quantities conditioned on the fluid realization Hf will be local and instantaneous,
similar to the instantaneous fluid velocity field.

3.1. Conditional averaging procedure

As highlighted in § 1.1 the statistical approach used to analyse the particle velocity –
the mesoscopic Eulerian formalism – is based on the presumed chaotic behaviour of
inertial particles interacting with a given realization of the gas-phase turbulent flow.
One can envision a large number of realizations Hp of the particulate phase which
differ slightly in the initial conditions and yield the same statistics at finite time (for
a given fluid flow realization, Hf ). Applying the ensemble average over this large
number of particulate flow realizations to the refined-grid p.d.f. Wp (cf. § 2.1), the
following particle p.d.f. conditioned by the fluid flow realization Hf can be defined:

f̃ (1)
p (x, cp, t, Hf ) = lim

Np→∞

 1

Np

∑
Np

Np∑
m=1

W (m)
p (x, cp, t, Hp|Hf )

 , (3.1)

which is the probability of finding a particle at the position x with a velocity cp at
the time t for a given fluid flow realization Hf . The first moment represents the local
and instantaneous probable number density of particles,

ñp(x, t, Hf ) =

∫
f̃ (1)

p (x, cp, t, Hf ) dcp, (3.2)

the local and instantaneous velocity of the particles is then

ṽp,i(x, t, Hf ) =
1

ñp(x, t, Hf )

∫
cp,i f̃

(1)
p (x, cp, t, Hf ) dcp. (3.3)

The relation (3.3) is referred to as the mesoscopic Eulerian particle velocity field
(MEPVF). For a given realization Hf , the velocity v(m)

p (t) of particle m, located at the
point x at the time t can be formally written in terms of the instantaneous Eulerian
velocity ṽp(x, t, Hf ) and a residual velocity component δv(m)

p (t),

v(m)
p (t) = ṽp

(
x(m)

p (t), t, Hf

)
+ δv(m)

p (t). (3.4)

It should be emphasized that the MEPVF is defined in the Eulerian frame of refe-
rence and therefore can be considered as a velocity field shared by all particles of
the system. In contrast, the particle velocity vp , as well as the residual component
δvp , are Lagrangian quantities associated with individual particles and defined along
trajectories. This dependence is stressed by the superscript (m) which identifies a given
particle. As will be shown in § 3.3, the decomposition of the particle velocity given by
relation (3.4) is unique, splitting the particle velocity into contributions that take into
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account the spatial structure (correlation) of the velocity field in the first term and
spatially uncorrelated motion in the second term.

Using the properties of the statistical operator 〈·〉, the residual velocity δvp(t)
satisfies the relation

〈δvp(t)|x = xp(t); Hf 〉 = 0. (3.5)

Important properties derived from the residual velocity δvp(t) include the kinetic
stress,

δσ̃p,ij (x, t, Hf ) = 〈δvp,iδvp,j |xp(t) = x; Hf 〉 , (3.6)

and quasi-Brownian kinetic energy,

δθ̃p(x, t, Hf ) = 1
2
δσ̃p,ii = 〈δvp,iδvp,i |xp(t) = x; Hf 〉 . (3.7)

3.2. Macroscopic quantities related to the MEPVF

The mesoscopic Eulerian velocity field of the particulate phase as developed above can
be considered similar to a compressible fluid with density ñp(x, t, Hf ) and velocity
ṽp(x, t, Hf ). Macroscopic quantities can be derived by applying a density-weighted
average, similar to Favre averaging in compressible gases, but in this case using
the particle number density. The averaging is carried out over a large number of
realizations of the mesoscopic Eulerian field, i.e. over a large number of fluid flow
realizations Hf . Consequently, one- and two-point statistics formed using ñp and ṽp

may be defined. Furthermore, noting that 〈·〉 = 〈〈·|Hf 〉〉, theoretical relations between
these macroscopic quantities can be derived and some of them are presented in the
following section. Further details are given in the Appendix.

3.2.1. One-point statistics of the MEPVF

The mean velocity of the MEPVF is defined as

Ṽ p(x, t) =
〈ñp(x, t, Hf )ṽp(x, t, Hf )〉

〈ñp(x, t, Hf )〉 = 〈ṽp〉p, (3.8)

and is identical to the mean velocity of the particulate phase, i.e. Ṽ p = V p (cf. (2.3)).
Note also the notation in the last term in (3.8), 〈·〉p , which is used to more compactly
indicate the number density-weighted average. In addition, 〈ñp(x, t, Hf )〉 = np(x, t)
(cf. (2.2)). The mean kinetic energy of the fluctuating (or turbulent) part of the
MEPVF is defined as

q̃2
p(x, t) =

1

2

〈ñp(x, t, Hf )ṽ′
p,i(x, t, Hf )ṽ′

p,i(x, t, Hf )〉
〈ñp(x, t, Hf )〉 =

1

2
〈ṽ′

p,i ṽ
′
p,i〉p, (3.9)

where ṽ′
p(x, t, Hf ) = ṽp(x, t, Hf ) −〈ṽp〉p(x, t) is the fluctuating velocity of the instan-

taneous Eulerian particulate velocity. The component q̃2
p is related to the total

turbulent kinetic energy q2
p through the relation

q̃2
p + δq2

p = q2
p. (3.10)

This relation simply represents the total fluctuating kinetic energy in terms of the sum
of the contribution from ṽp and the mean kinetic energy δq2

p of the residual velocity
distribution δvp ,

δq2
p(x, t) =

〈ñp(x, t, Hf )δθ̃p(x, t, Hf )〉
〈ñp(x, t, Hf )〉 = 〈δθ̃p〉p. (3.11)
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The fluid–particle Eulerian velocity covariance is defined as

q̃fp(x, t) =
〈ñp(x, t, Hf )u′

i(x, t)ṽ′
p,i(x, t, Hf )〉

〈ñp(x, t, Hf )〉 = 〈u′
i ṽ

′
p,i〉p. (3.12)

As shown in the Appendix, the residual velocity δvp of any particle is not correlated
with the undisturbed fluid velocity at the location of the particle centre,

〈u′
i(x, t)δvp,j (t)|x = xp(t)〉 = 0, (3.13)

for all i and j . Consequently, the Eulerian fluid–particle velocity covariance q̃fp and
the total fluid–particle velocity covariance qfp are identical, i.e. q̃fp = qfp . Therefore,
the MEPVF completely accounts for all one-point fluid–particle velocity correlations.
Finally, the fluid turbulence kinetic energy sampled along particle trajectories is
defined as

q̃2
f @p(x, t) =

1

2

〈ñp(x, t, Hf )u′
i(x, t)u′

i(x, t)〉
〈ñp(x, t, Hf )〉 =

1

2
〈u′

iu
′
i〉p, (3.14)

and the development in the Appendix shows q̃2
f @p = q2

f @p .

3.2.2. Two-point statistics of the MEPVF

As already shown, the mesoscopic Eulerian quantities ñp and ṽ′
p are functions of

the fluid realization Hf . For the sake of more compact notation in the following, this
dependence is not explicitly indicated in the development of the two-point relations
presented in this section. The macroscopic two-point correlations defined in terms of
the MEPVF are derived via averaging over a large number of fluid flow realizations
and therefore these quantities are not functions of Hf .

Sundaram & Collins (1997) accounted for the influence of the spatial distribution of
the particulate phase on collision rates by introducing the radial distribution function
at contact. The radial distribution function g̃pp defined in terms of the MEPVF is

g̃pp(x, x + r, t) =
〈ñp(x, t, Hf )ñp(x + r, t, Hf )〉

〈ñp(x, t, Hf )〉 〈ñp(x + r, t, Hf )〉 . (3.15)

The particle–particle velocity correlations is

R̃
pp
ij (x, x + r, t) =

〈ñp(x, t)ṽ′
p,i(x, t)ñp(x + r, t)ṽ′

p,j (x + r, t)〉
〈ñp(x, t)ñp(x + r, t)〉 , (3.16)

the fluid–particle velocity correlations are

R̃
fp
ij (x, x + r, t) =

〈ñp(x, t)u′
i(x, t)ñp(x + r, t, )ṽ′

p,j (x + r, t)〉
〈ñp(x, t)ñp(x + r, t)〉 , (3.17)

R̃
pf
ij (x, x + r, t) =

〈ñp(x, t)ṽ′
p,i(x, t)ñp(x + r, t)u′

j (x + r, t)〉
〈ñp(x, t)ñp(x + r, t)〉 , (3.18)

and the fluid–fluid velocity correlation at the particle position is

R̃
ff
ij (x, x + r, t) =

〈ñp(x, t)u′
i(x, t)ñp(x + r, t)u′

j (x + r, t)〉
〈ñp(x, t)ñp(x + r, t)〉 . (3.19)

3.3. Theoretical relations in dilute turbulent two-phase flow

The two-point correlations of the particle velocity (see § 2.3) highlight the two contri-
butions to the translation velocity of any particle: a spatially correlated component
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and a ‘quasi-Brownian’ velocity not correlated in space (and therefore not continuous).
The MEF provides an approach that expresses the particle velocity in terms of a
local-instantaneous Eulerian field ṽp(x, t, Hf ) and a residual component δvp(t). The
developments in the previous section (and also summarized more completely in the
Appendix) show that the velocity field ṽp(x, t) completely accounts for the one-point
fluid–particle velocity correlations since the residual velocity δvp(t) of any particle is
not correlated to the fluid velocity measured at the particle centre. Therefore, it seems
legitimate to expect that the residual velocities δvp(t) comprise the quasi-Brownian
distribution of the particulate phase. That correspondence is made definitive in this
section.

Considering any two particles m and n (m 	= n) of the system, for a given fluid flow

realization, the two-particle pair distribution function f̃ (2)
p is defined,

f̃ (2)
p (x, cp, x+, c+

p , t, Hf ) = lim
Np→∞

 1

Np

∑
Np

Np∑
m=1

Np∑
n=1

W (m,n)
p (x, cp, x+, c+

p , t, Hp|Hf )

.

(3.20)

For the gas–solid flows under consideration – dilute regimes for which turbulence
modulation and inter-particle interactions (hydrodynamic interactions and inter-
particle collisions) are neglected – the trajectory of any particle is fully defined
by its initial conditions and via interactions with the fluid velocity field. Because of
the presumed chaotic nature of the particle motion as discussed § 3.1, trajectories
become independent of initial conditions and, consequently, are fully defined by the
fluid flow realization. This implies that trajectories of two particles will be dependent
only through interactions with a shared fluid velocity field. Therefore, by considering
any two particles m and n (m 	= n), the Hf -conditioned probability of finding a
particle m at a point x with a velocity cp is independent of the position and velocity
of the other particle n. This independence allows the two-particle p.d.f. to be expressed
in terms of the one-particle p.d.f.s,

f̃ (2)
p (x, cp, x+, c+

p , t, Hf ) =
Np(Np − 1)

Np
2

f̃ (1)
p (x, cp, t, Hf )f̃ (1)

p (x+, c+
p , t, Hf ). (3.21)

Relation (3.21) therefore shows that the probability distribution function f̃ (1)
p provides

a complete description of the spatially correlated motion of the particulate phase.
Some of the important properties developed from (3.21) (and more completely
developed in the Appendix) are:

1. The velocity δvp is not spatially correlated with the instantaneous fluid velocity

field, i.e., 〈u′
i(x, t)δv(n)

p,j (t)|x + r = x(n)
p (t)〉 = 0. More specifically, δvp is not spatially

correlated to the instantaneous locally-undisturbed fluid velocity at the position of
any particle, 〈u′

i(x, t)δv(n)
p,j (t)|x = x(m)

p (t); x + r = x(n)
p (t)〉 = 0.

2. The component δvp is not spatially correlated to the instantaneous Eulerian

velocity field ṽp , i.e. 〈ṽ′
p,i(x, t)δv(n)

p,j (t)|x = x(m)
p (t); x + r = x(n)

p (t)〉 = 0.

3. The velocities δvp of any two (m 	= n) particles are not correlated, 〈δv(m)
p,j (t)

δv
(n)
p,j (t)|x = x(m)

p (t); x + r = x(n)
p (t)〉 = 0.

The relation (3.21) and properties summarized above which follow are impor-
tant results since they show that the decomposition of the particle velocity (3.4) is
unique – the residual component δvp is precisely the quasi-Brownian velocity of the
particle. Using other decompositions, e.g. as commonly considered when time- or
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volume-averaging the equations of motion, similar interpretations are not possible.
Furthermore, all of the information concerning the spatial structure of the particle
velocity field and its correlation with the fluid flow is accounted for in the MEPVF,
and for r � dp ,

gpp(x, x + r, t) = g̃pp(x, x + r, t), (3.22)

R
pp
ij (x, x + r, t) = R̃

pp
ij (x, x + r, t), (3.23)

R
fp
ij (x, x + r, t) = R̃

fp
ij (x, x + r, t), (3.24)

R
ff
ij (x, x + r, t) = R̃

ff
ij (x, x + r, t). (3.25)

It should be noted that the correlations derived from the MEPVF, e.g. R̃
pp
ij , are well-

defined for a continuum, i.e. for r < dp , while the two-point velocity correlations R
pp
ij

are theoretically defined for any two particles separated by a distance larger than dp .
Finally, (3.21) should also be valid in dilute systems even when inter-particle

collisions are taken into account. By analogy with the kinetic theory of dilute gases,
the trajectories of particles in the limiting regime of molecular chaos can be assumed
independent, except during a collision event. Making a similar assumption for other
regimes in dilute gas–solid flows leads to the conclusion that inter-particle collisions
will not induce spatial correlations in the particle velocity field and that (3.21) is valid
for |x − x+| >dp .

Part II. Numerical study of the particle velocity field in isotropic turbulence

In this section numerical simulation of isotropic turbulence laden with small heavy
particles is used to study the spatial characteristics of turbulent gas–solid flows. Direct
numerical simulation (DNS) of the fluid turbulence along with discrete particle
tracking for the dispersed phase is employed, an approach that has been widely
used in several previous studies (e.g. see Squires & Eaton 1991a, b; Elghobashi &
Truesdell 1993; Wang & Maxey 1993; Sundaram & Collins 1997; Wang et al. 2000;
Reade & Collins 2000). Though DNS remains the most satisfactory approach from
a theoretical point of view, it is limited to moderate Reynolds numbers, constraining
particle parameters that may be realistically considered.

An alternative technique that is less constrained and therefore also employed in the
present study is large-eddy simulation (LES) – direct resolution of the large turbulent
scales of the flow, with empiricism used to parameterize the effect of the small subgrid
scales of motion on the large eddies. LES is a useful approach for gas–solid flows
since the filtering effect of particle inertia results in relatively small errors in particle-
phase statistics due to the fact that the high-frequency gas-phase velocity fluctuations
are not directly resolved. The influence of the subgrid motions on particle transport
further decreases with increasing particle response times compared to the time scales
of the subgrid motions (e.g. see Yeh & Lei 1991; Deutsch & Simonin 1991; Simonin,
Deutsch & Boivin 1995; Wang & Squires 1996; Boivin, Simonin & Squires 2000;
Février 2000; Yamamoto et al. 2001). Important to note, however, is that the filtering
of small subgrid-scale fluid velocity fluctuations is only effective when the particle
response time is sufficiently large compared to the smallest resolved time scales of the
LES. While these and other studies have shown that statistical features dominated by
the large scales, including quantities such as turbulent dispersion and the particulate-
phase kinetic energy, can be accurately recovered using LES, of particular interest to
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the present simulations is application of LES for prediction of spatial structure, i.e.
the two-point velocity correlations.

Particle concentrations in the two-phase flows considered in the computations are
dilute, the influence of fluid turbulence modulation by the particle is neglected, as
are influences of inter-particle interactions. The particular flow under consideration is
statistically stationary isotropic turbulence with a dispersed phase of heavy particles
whose motion is governed by drag and without the effect of any body forces such as
gravity. Although perhaps the most canonical three-dimensional turbulent flow, fluid
turbulence dynamics and particle motion are complex and not easily predicted. The
configuration considered here also possesses the advantage that the particulate phase
attains a dynamical equilibrium with the fluid flow, enabling a verification of many
of the statistical features of particle motion against theoretical relations.

To assess the spatial features of the particulate phase, the MEF is applied in an
a priori fashion to the results of the Euler–Lagrange simulation. The computational
burden imposed for accurate analysis using the MEF is significant, requiring a large
number of particle-system realizations for a single fluid flow realization and § 5 is
devoted to a summary of the tests used to assess the accuracy of the numerical
procedures. Following the validation, the primary aim is to use of the results
from the Euler–Lagrange simulation to calculate the MEPVF (a property of all the
particles) and the QBVD (for each particle). Taking advantage of the homogeneity
and ergodicity of the two-phase flow, space and time averaging is performed to assess
the macroscopic statistical quantities of the particle phase, using both single-point and
two-point measures. The results are compared to the theoretical predictions obtained
from the MEF and also used to investigate the effect of particle inertia on the spatial
features of the gas–solid flow.

4. Simulation overview
4.1. Fluid phase

The three-dimensional time-dependent incompressible Navier–Stokes equations are
solved on a triply periodic cubic domain. The equations are integrated on a staggered
grid using centred second-order-accurate spatial differences. The discretized equations
are time advanced using a second-order Runge–Kutta scheme. In the large-eddy
simulations, the dynamic mixed model of Zang, Street & Koseff (1993) is used to
close the subgrid-scale stress. The formulation and its implementation in the current
solver is the same as described in Calmet & Magnaudet (1997). The flows are made
statistically stationary by forcing the low-wavenumber components of the velocity
field. The particular method is that developed by Eswaran & Pope (1988). The forcing
is accomplished by means of a complex vector-valued Uhlenbeck–Ornstein stochastic
process. All wavenumbers between two spherical shells of radius κFmin and κFmax are
subjected to forcing. Yeung & Pope (1989) showed that forcing the wavenumber
range ]0; 2

√
2κ0] (where κ0 is the lowest non-zero wavenumber) can lead to overly

large influences of the periodic boundary conditions employed in the calculations
on the resulting turbulent flow. Thus, for the primary computations reported in this
work the forced modes were in the range κFmin = 2κ0 and κFmax = 6κ0. These values
represent a compromise between contamination of flow-field statistics due to artifacts
of the forcing scheme and the boundary conditions (Février 2000). The correlation
time scale associated with the forcing scheme is chosen to ensure TE ≈ Te, where Te

is the eddy-turnover time defined as Te = L
f
F /u′. Note that the Eulerian integral time

scale denoted TE is defined from the temporal velocity correlation sampled at fixed
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[κFmin; κFmax] ReL Re
λ
f
G

u′ ε L
f
F TL TL/τη κmaxη

DNS 1283 [2κ0; 6κ0] 110 52 0.160 0.236 0.0104 0.051 6.40 1.086
LES 963 [2κ0; 6κ0] 700 134 0.145 0.188 0.0096 0.054 16.6 0.190

DNS 963 ]0; 2
√

2κ0] 140 67 0.126 0.053 0.0166 0.130 7.73 1.183

Table 1. Fluid flow simulation parameters.

points,

TE =

∫
1

2

〈u′
i(x, t)u′

i(x, t + τ )〉
q2

dτ . (4.1)

Summarized in table 1 are parameters of the fluid flow after the simulations have
evolved to a statistically stationary condition. The parameters in table 1 are the
turbulent Reynolds number ReL =L

f
F u′/ν (where ν is the kinematic viscosity), the

Taylor-microscale Reynolds number Reλf
G
= λ

f
Gu′/ν (where λ

f
G is the transverse Taylor

microscale), the r.m.s. fluid fluctuating velocity component u′ = (2q2/3)1/2 (where q2

is the fluid turbulent kinetic energy), the energy dissipation rate ε, the integral length
scale of the longitudinal spatial velocity correlation L

f
F , and the Lagrangian integral

time scale TL. The Kolmogorov length scale η = (ν3/ε)1/4 and time scale τη =(ν/ε)1/2

are also tabulated. Three computations of the fluid turbulence are reported, a 1283

DNS at ReL =110 and a 963 LES at ReL =700, both with forcing applied on the
wavenumber range [2κ0; 6κ0]. A 963 DNS at ReL = 140 with forcing on the range
]0; 2

√
2κ0] was also performed. The 963 DNS introduces more variability in the flow-

field statistics via the change in forced modes, in turn providing some insight into the
effects of the forcing on properties of the two-phase flow. Values of the parameter
κmaxη (where κmax is the highest resolvable wavenumber) are also summarized in
the table. As shown, for the DNS the values are larger than unity, consistent with
previous work that indicates that κmaxη > 1 is adequate for resolution of small-scale
features (e.g. see Yeung & Pope 1989 and Balachandar & Maxey 1989).

4.2. Particulate-phase treatment

The particulate phase is composed of a mono-disperse mixture of particles with dia-
meters dp smaller than the Kolmogorov length scale. Gas–solid mixtures are
considered in which the particle density is large compared to the fluid value (O(1000)).
In this regime, particle motion is governed mainly by drag, and the equation of motion
used to determine the velocity of the particles takes the form

dxp

dt
= vp,

dvp

dt
=

ρ

ρp

18ν

d2
p

(u − vp)fD, (4.2)

where vp and xp are the velocity and the centre position of a particle, and u is the
value of the fluid velocity undisturbed by the presence of the particle at the particle
centre. For the computations performed in this study, the particle Reynolds number,
Rep = dp |u − vp| /ν is less than 10. As is appropriate for this regime, the drag force
is modified using the empirical relation of Schiller & Nauman (1935),

fD = 1 + 0.15Re0.687
p . (4.3)

For the current simulations in which turbulence modulation by particles is neglected,
the undisturbed value is the fluid velocity resolved by the DNS and LES. In the LES
this fluid velocity represents the spatially filtered (volume averaged) solution of the
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Navier–Stokes equations. The influence of subgrid-scale transport on particle motion
is not considered, which is a reasonable assumption so long as the particle response
time is sufficiently large compared to the smallest resolved time scales of the LES in
order that subgrid velocity fluctuations will be effectively filtered by particle inertia.

For a single calculation of the fluid flow, simultaneous computation of several
particle classes were performed, with each class corresponding to a particular set
of particle parameters. Particle Stokes numbers were calculated at the conclusion of
a simulation, using the fluid Lagrangian time scale TL and averaged particle time
constant, St = τF

fp/TL. The mean particle relaxation time is defined as

τF
fp =

d2
p

18ν

ρp

ρ

1

〈fD〉 , (4.4)

where the average is taken with respect to the dispersed phase. A reasonably wide
distribution in time constants was considered in order to investigate the particulate-
phase properties ranging from very low-inertia particles capable of nearly following
the motion of fluid elements to very large-inertia particles that were quite unresponsive
to the spectrum of fluid turbulent motions. The resulting Stokes numbers range from
St =0.02 to St = 10 for the simulations presented in this manuscript.

Particles are introduced into the computational domain at random initial positions
with zero initial velocity. In agreement with Wang & Maxey (1993), the transient
prior to the equilibration of the r.m.s. particle velocity is about 3τF

fp , while it is about
2Te for the concentration distribution. Statistics are acquired over at least 12Te, after
the two-phase flow has reached statistical equilibrium. Particle sample sizes in the
computations were varied from 3×105 to 10×106. The largest sample sizes were used
in calculations to extract detailed information concerning properties of the MEPVF
and QBVD. As also described below, statistical features could be accurately acquired
using smaller sample sizes, and the adequacy of the sample, and of the approach
in general, is verified using the theoretical relations developed in Part I above. In
the following, statistical features normalized by large-scale variables are considered.
Such normalization is adequate for long-time statistics such as the kinetic energy and
turbulent dispersion since these quantities are governed by the interaction of particles
with the large scales of the turbulence (e.g. see Hinze 1975). This normalization is
shown to be adequate for analysis of the long-time statistics of the MEPVF and
QBVD.

4.3. Approximation of the MEPVF

The MEF is based on ensemble averaging over a large number of realizations of the
particulate-phase system, conditioned on a single fluid flow realization. The evaluation
of the MEF using the simulation database is performed using local volume averages.
This requires sufficient particle sample sizes within any volume in order to obtain
meaningful statistics and also that the volume dimensions be sufficiently small such
that there is effectively no variation in the mesoscopic field of the particles. Provided
these criteria are satisfied, these two procedures – ensemble averaging and volume
averaging – will yield the same statistics.

The MEPVF is resolved over small volumes Ω = (�y)3 in which the length scale
�y is equal to or smaller than the corresponding grid spacing used for resolution of
the fluid flow, i.e. �y � �x. The instantaneous Eulerian properties of the particulate
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phase expressed in terms of the local volume averages take the form

ñp(x, t, Hf ) ≡ 1

Ω(x)

∫
Ω(x)

〈
Np∑

m=1

δ
(
r − x(m)

p (t)
)
|Hf

〉
dr, (4.5)

ṽp(x, t, Hf ) ≡ 1

Ω(x)

∫
Ω(x)

〈
Np∑

m=1

v(m)
p (t)δ

(
r − x(m)

p (t)
)
|Hf

〉
〈

Np∑
m=1

δ
(
r − x(m)

p (t)
)
|Hf

〉 dr, (4.6)

u(x, t) ≡ 1

Ω(x)

∫
Ω(x)

〈
Np∑

m=1

u(r, t)δ
(
r − x(m)

p (t)
)
|Hf

〉
〈

Np∑
m=1

δ
(
r − x(m)

p (t)
)
|Hf

〉 dr. (4.7)

For the applications considered in this study, the bin volumes Ω are cubic, consistent
with the orthogonal mesh used for resolution of the Navier–Stokes equations, and in
the following the volume dimension �y is varied in order to assess the sensitivity of
the MEPVF to �y and to determine a practical value for subsequent computations.

4.4. Numerical approach for the evaluation of the MEPVF

From a practical standpoint, it is preferable to calculate the MEPVF by first integ-
rating the particle velocity over volume Ω , and then by averaging over a large
number of realizations of the particle-phase system. Interchange of the operations of
integration and averaging yields an expression for the local number density,

ñp(x, t, Hf ) =

〈[
1

Ω(x)

∫
Ω(x)

Np∑
m=1

δ
(
r − x(m)

p (t)
)
dr

]∣∣∣∣∣ Hf

〉
. (4.8)

Assuming the variation of the local particle number density ñp is small within the
volume Ω(x), it is possible to approximate (4.6) as

ṽp(x, t, Hf ) ≈ 1

ñp(x, t, Hf )

〈[
1

Ω(x)

∫
Ω(x)

Np∑
m=1

v(m)
p (t)δ

(
r − x(m)

p (t)
)
dr

]∣∣∣∣∣ Hf

〉
. (4.9)

The instantaneous fluid velocity along the particle trajectory is approximated in the
same manner,

u(x, t) ≈ 1

ñp(x, t)

〈[
1

Ω(x)

∫
Ω(x)

Np∑
m=1

u(r, t)δ(r − x(m)
p (t)) dr

]∣∣∣∣∣ Hf

〉
. (4.10)

Note that for an averaging volume Ω with dimension �y � �x, the fluid velocity
constructed from (4.10) can be compared to the corresponding fluid velocity obtained
in the DNS in order to assess errors arising from the interpolation of the fluid velocity
from neighbouring grid points to the particle positions, in addition to effects arising
from any bias in the particle concentration with the volume Ω .
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Given an ensemble of realizations Np , each with Np particles, the above relations
for the MEPVF are approximated as

ñ∗
p(x, t, Hf ) =

1

Np

∑
Np

Np∑
m=1

χ (m)∗
p (x, t, Hp|Hf ), (4.11)

where ñ∗
p(x, t)(�y)3 represents the instantaneous number of particles within the

volume Ω(x). The velocity is obtained via

ṽ∗
p(x, t, Hf ) =

1

ñ∗
p(x, t, Hf )

1

Np

∑
Np

Np∑
m=1

v(m)
p (t)χ (m)∗

p (x, t, Hp|Hf ), (4.12)

where χ (m)∗
p (x, t, Hf &p) = 1/Ω(x) if the centre of particle m is within the volume

Ω(x) at time t , and χ (m)∗
p (x, t, Hp|Hf ) = 0 otherwise. The fluid velocity along particle

trajectories is approximated by

u∗(x, t) =
1

ñ∗
p(x, t, Hf )

1

Np

∑
Np

Np∑
m=1

u
(
x(m)

p (t), t
)
χ (m)∗

p (x, t, Hp|Hf ). (4.13)

The accuracy of the instantaneous Eulerian quantities computed using the above
formulae, i.e. the variables with the ∗ superscripts, is dependent upon the sample
size Ns employed in the averaging process. With averaging over both space and Np

realizations, the sample size is written as

Ns(x, t) = Npñ∗
p(x, t, Hf )Ω(x), (4.14)

showing that the number of samples Ns in volume Ω(x) is given by the particle
population within the volume Ω(x) at time t over all Np realizations. Note that
if Ns is very large, (4.11), (4.12), and (4.13) will be accurate approximations of the
instantaneous mesoscopic Eulerian properties of the particulate phase. If the sample
Ns(x, t) is not large (Ns(x, t) = {0; 1}), then statistics of the particulate phase will
be representative of the complete particle velocity, rather than the MEPVF. Note
that Ns(x, t) = {0; 1} implies that two-point statistics are relevant only for r � �y.
Variation in the sample size then enables verification of theoretical relations such as
(3.25).

One- and two-point statistics are computed according to the relations in § 3.2. For
example, the turbulent kinetic energy of the MEPVF is approximated as

q̃2
p

∗ =
1

2

〈ñ∗
p(x, t, Hf )ṽ′∗

p,i(x, t, Hf )ṽ′∗
p,i(x, t, Hf )〉

〈ñ∗
p(x, t, Hf )〉 (4.15)

where ṽ′∗
p,i = ṽ∗

p,i − Vp,i . The radial distribution function gpp is calculated from

gpp∗(r) =
〈ñ∗

p(x, t, Hf )ñ∗
p(x + r, t, Hf )〉

〈ñ∗
p(x, t, Hf )〉〈ñ∗

p(x + r, t, Hf )〉 . (4.16)

Two-point velocity correlations, for example the particle–particle correlations, are
calculated via

R
pp
ij

∗(r) =
〈ñ∗

p(x)ṽ′∗
p,i(x)ñ∗

p(x + r)ṽ′∗
p,j (x + r)〉

〈ñ∗
p(x)ñ∗

p(x + r)〉 . (4.17)

Note that the dependence of the mesoscopic Eulerian quantities on Hf and t is
omitted from the above.
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Figure 4. Comparison of the fluid turbulence energy spectrum computed on the grid to that
obtained following massless particle trajectories and obtained using (4.13). ——, fluid energy
spectrum on the grid; – – – –, fluid energy spectrum obtained from the velocity obtained using
(4.13). LES prediction at ReL = 700.

5. Validation of the numerical approach for assessing the MEF
Prior to applying the method described in § 4.4 to finite-inertia particles, the

approach is assessed for fluid-element motion. Shown in figure 4 is a comparison
of the energy spectrum obtained from the fluid flow solution on the grid to that
obtained from the velocity field computed using (4.13), i.e. following fluid element
trajectories. The agreement in the spectra at low wavenumbers is very good, with
more visible differences apparent at the high wavenumbers. The larger differences
at the higher wavenumbers arises from the filtering effect of the interpolation used
to determine the fluid velocity along particle trajectories (e.g. see Boivin et al. 1998).
This discrepancy is highlighted in the LES at large turbulence Reynolds number since
κmaxη is substantially below unity (cf. table 1). For larger values of the parameter
κmaxη > 1, as in the DNS, the differences in the spectra shown in figure 4 are smaller.

Variations in the accuracy and scale of resolution can be considered via changes in
�y and Ns . For a fixed particle sample size Np , variation in �y implies corresponding
variations in Ns . In the following, different values of the combination (�y; Ns) are
considered, with changes in Ns achieved via variations in Np as well as �y.

Shown in figure 5 is the influence of the volume size over which the particulate-
phase number density and velocity are resolved as well as the effect of the sample
size Ns on the radial distribution function. Variation in 〈Ns〉 enables a posteriori
verification of the theoretical relation (3.22) developed in Part I. Profiles are shown for
a range of particle Stokes numbers, St = τF

fp/TL; the results shown in the figure are
from the DNS at ReL = 140, and the radial distribution function gpp∗(r) is computed
using (4.16). The profiles shown in the figure were obtained using volumes Ω with
resolution identical to that used for the DNS, i.e. �y =�x and finer by more than a
factor of two, �y = 3�x/8. For the larger volume, the average sample of particles per
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Figure 5. Influence of volume size and sample size on the radial distribution function gpp(r).
Profiles shown for Stokes number, St = τF

fp/TL, considered in the 963 DNS, ReL = 140. (a) St =
0.022; (b) St = 0.05; (c) St =0.087; (d) St = 0.134; (e) St = 0.256; (f ) St =0.5. �, gpp(r)
obtained using volumes Ω with dimension �y = 3�x/8 and 〈Ns〉 = 0.6; +, gpp(r) obtained
using volumes Ω with dimension �y =�x and 〈Ns〉 = 11.3.

cell is 〈Ns〉 = 11.3, while for the smaller volume the average sample is 〈Ns〉 =0.6. An
important feature is that figure 5 shows that gpp∗ is not sensitive to the parameter Ns ,
in turn consistent with the theoretical relation (3.22). Further, comparison between
gpp∗ obtained on the larger grid �y = �x to that obtained on the finer mesh with
�y = 3�x/8 shows that gpp∗(r) is represented with comparable accuracy for r � �y.

Figure 5 shows that the change with St in the radial distribution function is not
monotonic, with peak values away from unity for the intermediate Stokes numbers
around 0.10. Scaling of the Stokes number using Kolmogorov variables shows the peak
occurring for Stokes numbers close to unity, in agreement with Sundaram & Collins
(1997) and Reade & Collins (2000), among others. As discussed in Wang & Maxey
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(1993), low-inertia particles tend to passively follow the turbulent motion of the fluid
and preferential concentration into low-vorticity or high-strain-rate regions is weak.
For very large Stokes numbers, particle motion is relatively unaffected by interactions
with the turbulent carrier flow and effects of preferential concentration are again not
substantial. Between these limiting cases, effects of preferential concentration become
apparent, as shown in the figure with the radial distribution function larger than unity
at small distances r . The variations of the radial distribution function with distance r

are closely associated with the shape of particle clusters in the flow. If, for example, a
large number of particles are clustered into thin structures, then there will be strong
variations in gpp(r) for small r (e.g. see Reade & Collins 2000). For substantially
non-uniform distributions of the particles, the spatial variations of the instantaneous
particle number density ñp are in turn also quite large. Consequently, the accuracy to
which properties of the MEPVF can be recovered from the volume averages decreases
with increasing effects of particle segregation by turbulent structures.

Shown in figure 6 is the effect of the parameters �y and Ns on the longitudinal two-
point correlations: the fluid–particle velocity correlations F fp∗(r) and the particle–
particle velocity correlations F pp∗(r). Similar to the behaviour observed in the radial
distribution function, the figure shows that the correlations F pp∗(r) and F fp∗(r) are
not sensitive to the sample size Ns , a result that is in agreement with the relations
(3.23) and (3.24) developed in Part I. Figure 6 also shows that the velocity correlations
are accurate for �y � �x, consistent with the assumption of negligible variations in
the spatial features of the particulate-phase properties at scales smaller than the
smallest scales of the fluid flow. It should be noted, however, that a small dependence
on �y is apparent for r < 2�y for particles that exhibit strong effects of preferential
concentration, e.g. as shown in figure 5 for St = 0.134 and also observed in the
fluid–fluid velocity correlations F ff ∗(r) in figure 6.

Two-point velocity correlations are displayed in figure 7 for finite-inertia particles
that do not exhibit strong effects of preferential concentration (St =3.15), the
particular curves being obtained from the LES at ReL = 700. The correlations are
obtained for different values of the average particle sample 〈Ns〉 ranging from 0.017
to 38.1, the largest sample size being adequate for obtaining an accurate description of
the MEPVF and QBVD. The results in the figure again confirm that F pp∗(r), F fp∗(r)
and F ff ∗(r) do not depend on the parameter Ns . For �y smaller than the mesh
size �x used for solution of the Navier–Stokes equations, the velocity correlations
are accurate with no dependence on �y. For �y > �x, the small scales of the fluid
turbulence are not captured by F ff ∗(r), and as shown by figure 7, F ff ∗(r) differs from
the actual correlation F ff (r) for small separations r . In contrast, this discrepancy
is not yet apparent in the correlations F pp∗(r) and F fp∗(r) because the spacing �y

remains smaller than the smallest scales of the MEPVF.
Considering the independence of the two-point velocity correlations of the

parameter Ns , the numerical results confirm that the MEPVF accounts completely for
the spatial correlations of the particulate phase, i.e. in agreement with the theoretical
relations (3.23), (3.24), and (3.25), for r � dp ,

F pp(r) = F̃ pp(r), F fp(r) = F̃ fp(r), F ff (r) = F̃ ff (r). (5.1)

The numerical results show that, in the limit r/L
f
F → 0, the two-point velocity correla-

tions F̃ fp(r) and F̃ ff (r) tend to the one-point velocity correlations q̃fp/3 and 2q̃2
f @p/3,

respectively. Furthermore, the theoretical relations q̃fp = qfp and q̃2
f @p = q2

f @p have
also been confirmed from the numerical simulations. This in turn leads to the following
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Figure 6. Influence of volume size and sample size on (a) the Eulerian particle–particle
Fpp∗(r) and (b) fluid–particle Ffp∗(r) velocity correlations. Profiles obtained from 963 DNS
at ReL = 140. ——, �y = 3�x/8, 〈Ns〉 = 0.12; symbols are for �y = �x, 〈Ns〉 = 11.3: ∗,
τF
fp/TL = 0.134; �, τF

fp/TL = 0.256; +, τF
fp/TL = 0.5; ×, τF

fp/TL = 1.5. The fluid–fluid velocity
correlations sampled along particle trajectories for τF

fp/TL =0.134 are also shown using – – – –
for �y = 3�x/8 and � for �y = �x in (a).

relations:

lim
r/L

f
F → 0

F̃ fp(r) = q̃fp/3 = qfp/3, (5.2)

lim
r/L

f
F → 0

F̃ ff (r) = 2q̃2
f @p/3 = 2q2

f @p/3. (5.3)
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An additional important result demonstrated by the simulations is that the
particle–particle two-point velocity correlations remain smaller than the fluid–particle
correlation (cf. figure 7) and in the limit of the separation r going to zero,

lim
r/L

f
F → 0

F̃ pp(r) = 2q̃2
p/3 � 2q2

p/3. (5.4)

6. Measured characteristics of the MEPVF and QBVD
6.1. Kinetic energy of the MEPVF and QBVD

The QBVD represents a random contribution to the motion of a finite-inertia particle,
an effect that can be demonstrated through consideration of the effect of the initial
particle velocity on the subsequent development of the kinetic energy of the MEPVF
and QBVD. This effect is shown in figure 8. Three different initial conditions for
the particle velocity are shown in the figure: (i) the initial particle velocity equal to
the fluid velocity at the particle position, (ii) zero initial particle velocity, and (iii) a
random initial particle velocity sampled from a Gaussian distribution with zero mean
and variance close to 2q2/3. For each initial condition, the particles are evolved in
the same realization of the fluid flow; the results shown in the figure are from the 963

DNS at ReL = 140. Note also that the fluid flow simulation was first integrated to a
statistical equilibrium prior to integration of the particulate phase. The influence of
the initial conditions on the temporal evolution of the kinetic energy of the MEPVF
and QBVD is shown for St = 0.81.

For the first case (i), the initial particle velocities possess the same spatial correlation
as the fluid elements from which the initial velocity was specified. The quasi-Brownian
contribution to the particle velocity for this case is zero, i.e. δq2

p = 0. The figure shows
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Figure 8. Influence of the initial velocity on the kinetic energy of the MEPVF and QBVD.
�, q2

p; �, q̃2
p; 
, δq2

p . Particle positions are initially random throughout the computational
domain. Initial velocities: (i) particle velocity equal to the fluid velocity at the particle position,
(ii) zero velocity, (iii) random velocities sampled from a Gaussian distribution with zero mean
and variance equal to u′2. Results from the 963 DNS at ReL = 140, St = 0.81.

that the total kinetic energy q2
p decreases to its equilibrium value within about 3τF

fp .
The kinetic energy of the MEPVF decreases more rapidly than does q2

p while the
energy of the QBVD increases. Equilibrium values for q̃2

p and δq2
p are also attained

after about 3τF
fp . For case (ii) the initial particle velocities correspond to kinetic ener-

gies q̃2
p = q2

p =0 and δq2
p = 0; for case (iii) the initial particle velocities have no spatial

correlation, i.e. δq2
p = q2

p . For each case, the energy of the MEPVF and QBVD reaches
the same equilibrium state, the transient being again about 3τF

fp . Figure 8 shows that
the QBVD is a physical contribution to the particle velocity distribution resulting
from the inertial bias in particle trajectories.

The equilibrium values of the kinetic energy of the MEPVF and QBVD normalized
by the total particle kinetic energy are shown in figure 9. For small response times,
particles tend to move as fluid elements and consistent with the scalar limiting case the
simulations show that the kinetic energy of the QBVD tends to zero. With increasing
inertia, particles do not adapt as rapidly to the local fluid motions, and the simulations
show the fraction of kinetic energy residing in the QBVD, δq2

p/q2
p , increases while the

fraction residing in the MEPVF decreases. For response times τF
fp ≈ TL, the contribu-

tion of the QBVD to the particle kinetic energy is approximately 30% of the total.
In the limit of very large inertia, particle motion will be mainly driven by the QBVD,
with negligible energy in the MEPVF. Consistent with the work of Abrahamson
(1975), in the large-inertia limit particle transport will be stochastically equivalent
to a Brownian motion. In addition, the particle velocity distribution as well as the
distribution of the relative velocity between two particles will be Gaussian in the
large-inertia limit (e.g. see Laviéville, Deutsch & Simonin 1995).
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Figure 9. Effect of particle inertia on the kinetic energy of the MEPVF and QBVD. Values
of the ordinate tending to 1 (0) for large values of the abscissa identify q̃2
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p). �,

1283 DNS at ReL = 110; ∗, 963 DNS at ReL = 140; 
, LES at ReL = 700.

An important result apparent in figure 9 is that the evolution of the kinetic energy
of the MEPVF and QBVD are similar for both DNS, i.e. at 1283 and ReL = 110, 963

and ReL =140. These calculations employ different parameters for the forcing scheme
used to maintain a statistically stationary flow. This in turn further illustrates that
the QBVD is not an artifact of the stochastic process evolving from the forcing, but
is a physical feature arising because of the inertia of the particles. Furthermore, for
large-inertia particles that are quite unresponsive to the small-scale fluid turbulent
motions, the evolution of the kinetic energy of the MEPVF and QBVD is accurately
predicted in the LES, as illustrated via the large-scale normalization (cf. figure 9).
This further reinforces the result that quantities such as the total particle kinetic
energy are dominated by the large-scale motions of the fluid. In the present context,
the long-time statistics of the MEPVF and QBVD are controlled by the interaction
of particles with the large turbulent scales of the fluid.

The mean values, for the particle fluctuating motion, of the total kinetic energy
(q2

p), MEPVF (q̃2
p), and QBVD (δq2

p) normalized by the fluid kinetic energy following
particle trajectories q2

f @p are shown in figure 10. For the flow fields under consideration
in this study – statistically stationary homogeneous and isotropic particle-laden
turbulence with particle motion given by (4.2) – simulation results may be evaluated
using the theoretical predictions from Tchen (1947) assuming an exponential shape
for the fluid autocorrelation function measured along the particle path (Deutsch &
Simonin 1991):

q2
p = 1

2
qfp, qfp = 2

ηr

1 + ηr

q2
f @p (6.1)



Partitioning of particle velocities in gas–solid turbulent flows 29

K
in

et
ic

 e
ne

rg
y

0

0.2

0.4

0.6

0.8

1.0

10–2 10–1 100 101 102

q2
f @p

q2
p

q2
f @p

q2
f @p

q2
p

δq2
p

TL
f@p/τF

fp

~

Figure 10. Effect of particle inertia on the particulate-phase kinetic energy. �, 1283 DNS
at ReL = 110; ∗, 963 DNS at ReL = 140; 
, LES at ReL = 700. ——, prediction of the total
particulate-phase kinetic energy using the theoretical relation (6.1).

with the time-scale ratio ηr = T
f @p
L /τF

fp . As shown by figure 10, the dependence of

q2
p on particle inertia is accurately predicted using (6.1) for large- and intermediate-

inertia particles; deviations from the simulation results are observed for smaller
response times due to effects of inertial bias in particle motion. The calculations show
a maximum in δq2

p for τF
fp ≈ TL. This maximum represents a balance between the

reduction of the total turbulent kinetic energy q2
p and the increase of the QBVD

contribution that arises with increasing inertia. Note that figure 10 also shows that
the kinetic energy of the MEPVF decays more rapidly with increases in particle
inertia than observed for q2

p . This feature not only provides additional evidence
for the existence of the QBVD, but is also indicative of a transfer of energy from
the MEPVF towards the QBVD, as shown in the next section using the transport
equations governing q̃2

p and δq2
p .

The ratio of the kinetic energy of the mesoscopic field to the total particulate-phase
kinetic energy is shown in figure 11, plotted against the ratio of the total particle-phase
kinetic energy to the fluid kinetic energy following particle trajectories. Also shown
using the solid line in the figure is the relationship corresponding to a square-root
growth of q̃2

p/q2
p with q2

p/q2
f @p . Figure 11 shows that the simulation results follow

the square-root dependence reasonably closely for both sets of DNS results and LES
predictions.

6.2. Eulerian transport equations for the mesoscopic field

As discussed in the previous section, figure 10 provides evidence for both the
existence of the QBVD and the transfer of particulate-phase kinetic energy from
the correlated motions towards the quasi-Brownian component. Additional insight
into the partitioning of the particle velocity can be gained by consideration of the
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Figure 11. Ratio of the mean kinetic energy of the MEPVF, q̃2
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kinetic energy, q2
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p to the fluid kinetic energy following particle trajectories is
plotted along the horizontal axis; the solid line corresponds to a square-root growth of q̃2

p . �,

1283 DNS at ReL = 110; ∗, 963 DNS at ReL = 140; 
, LES at ReL = 700.

transport equations for the particle velocity field. The relevant equations are derived
in this section.

Eulerian transport equations governing the evolution of the particulate phase can

be derived from the kinetic equation satisfied by the p.d.f. f̃ (1)
p ,

∂f̃ (1)
p

∂t
+

∂

∂xj

[
cp,j f̃

(1)
p

]
+

∂

∂cp,j

[
Fj

mp

f̃ (1)
p

]
= 0, (6.2)

where Fj represents the external force acting on the particle and mp is the particle
mass. Moments of (6.2) yield transport equations for local and instantaneous
quantities, and the relations developed below correspond to a fluid force acting on the
particle that is written in the form Fj = −mp(cp,j −uj )/τp where τp is a function of the
particle Reynolds number, e.g. as illustrated by (4.2) and (4.3). In the Stokes regime,
the force Fj varies linearly with respect to the particle-to-fluid relative velocity, the
relaxation time is given by τp = ρpd2

p/(18ρν) (ν is the fluid kinematic viscosity), and
the averaged fluid force in the Eulerian transport equations can be written explicitly
in terms of the mesoscopic particle properties. If the force Fj is not linear it is
possible to generalize the proposed approach, consistent with the introduction of the
mean particle relaxation time τF

fp given in (4.4), by introducing an averaged particle

relaxation time τ̃p = ρpd2
p/(18ν)/〈fD|x = xp(t); Hf 〉 and by neglecting the correlations

between the fluctuations of the drag coefficient and of the particle relative velocity.
The mean particle relaxation time (4.4) is related to τ̃p via 1/τF

fp = 〈1/τ̃p〉p .
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Using (3.2), (3.3), and (6.2), the number density ñp evolves according to

∂ñp

∂t
+

∂

∂xi

[ñpṽp,i] = 0. (6.3)

Similarly, the mesoscopic Eulerian velocity ṽp,i satisfies

ñp

∂ṽp,i

∂t
+ ñpṽp,j

∂ṽp,i

∂xj

= ñpgi − ñp

[
ṽp,i − ui

τ̃p

]
− ∂

∂xj

[ñpδσ̃p,ij ], (6.4)

where gi is the acceleration due to gravity. The last term in (6.4) accounts for the
action of the QBVD on the MEPVF where δσ̃p,ij is the ‘kinetic stress tensor’ of the
QBVD. The trace of this tensor can be used to define a quasi-Brownian pressure, an
effect that will induce dispersion of the number density ñp , and the non-diagonal part
of δσ̃p,ij will induce a dissipation of the MEPVF. The transport of the kinetic energy
of the QBVD δθ̃p = δσ̃p,ii/2 can also be derived from (6.2), leading to

ñp

∂δθ̃p

∂t
+ ñpṽp,i

∂δθ̃p

∂xi

= −ñpδσ̃p,ij

∂ṽp,i

∂xj

− 2
ñp

τ̃p

δθ̃p − ∂

∂xi

[ñpδQ̃p,i]. (6.5)

The first term on the right-hand side of (6.5) accounts for the transfer of energy
from the MEPVF towards the quasi-Brownian component. As shown by (6.5), the
production of kinetic energy occurs via interaction with the velocity gradients of
the MEPVF. It is important to note that the kinetic energy of the quasi-Brownian
motions is not produced via direct interactions with the carrier fluid flow. The second
term accounts for the effect of the fluid interaction with the particles and is a purely
dissipative contribution to the QBVD. The last term represents transport due to

the triple-velocity correlations where δQ̃p,i = 〈δvp,iδvp,j δvp,j |x = xp(t); Hf 〉/2 is the
contracted third-order correlation of the QBVD.

6.3. Mean kinetic energy transport equations for the MEPVF and QBVD

The interactions between the mean kinetic energy of the MEPVF and QBVD are
derived using the Eulerian transport equations above that describe the local and
instantaneous MEPVF. The mean kinetic energy of the fluctuating component of the
MEPVF, q̃2

p , is repeated from (3.9) for convenience,

npq̃2
p = 1

2
〈ñpṽ′

p,i ṽ
′
p,i〉 = 1

2
np〈ṽ′

p,i ṽ
′
p,i〉p, (6.6)

where np is the mean number density. The balance equation for q̃2
p can be derived by

averaging over all two-phase flow realizations the vector product of ṽ′
p,i with (6.4),

np

∂q̃2
p

∂t
+ npVp,i

∂q̃2
p

∂xi

= − ∂

∂xj

1

2
[np〈ṽ′

p,iδσ̃p,ij 〉p + np〈ṽ′
p,i ṽ

′
p,i ṽ

′
p,j 〉p]

− np

τF
fp

[
2q̃2

p − qfp

]
− np〈ṽ′

p,i ṽ
′
p,j 〉p

∂Vp,i

∂xj

− npε̃p. (6.7)

The dissipation rate of the mesoscopic field has been introduced into the last term of
(6.7) and takes the form

ε̃p = −
〈

δσ̃p,ij

∂ṽ′
p,i

∂xj

〉
p

. (6.8)

For the QBVD, the mean kinetic energy of the residual component of the particulate
velocity is rewritten from (3.11),

npδq2
p = 1

2
〈ñpδvp,iδvp,i〉 = np〈δθ̃p〉p. (6.9)
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Figure 12. Effect of particle inertia on the dissipation rate of the MEPVF, ε̃p . �, 1283 DNS

at ReL =110; ∗, 963 DNS at ReL = 140; 
, LES at ReL = 700.

Averaging (6.5) yields the transport of the mean kinetic energy of the quasi-Brownian
motion,

np

∂δq2
p

∂t
+ npVp,i

∂δq2
p

∂xi

= − ∂

∂xj

[np〈δQ̃p,i〉p + np〈ṽ′
p,j δθ̃p〉p]

− np

τF
fp

2δq2
p − np〈δσ̃p,ij 〉p

∂Vp,i

∂xj

+ npε̃p. (6.10)

Important to note in the above is that the dissipation of the kinetic energy of the
MEPVF in (6.7) corresponds to production of the quasi-Brownian kinetic energy in
(6.10).

The relations governing kinetic energy transport can be simplified for the current
simulations of statistically stationary, homogeneous and isotropic turbulence. The
transport of the mean mesoscopic turbulent kinetic energy (6.7) reduces to

− 1

τF
fp

[2q̃2
p − qfp] − ε̃p = 0, (6.11)

and the mean kinetic energy of the quasi-Brownian motion (6.10) becomes

− 1

τF
fp

2δq2
p + ε̃p = 0. (6.12)

Values of ε̃p normalized by the dissipation rate of the fluid turbulence ε are shown
in figure 12. For small relaxation times the figure shows that the ratio of ε̃p to the
fluid dissipation rate is small, corresponding to the regime in which most of the
kinetic energy of the particles resides in the correlated motion and for which there is
relatively little transfer to the quasi-Brownian component (cf. figure 10). For large
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Figure 13. Effect of particle inertia on the time-scale ratio, η̃r . �, 1283 DNS at ReL = 110;
∗, 963 DNS at ReL = 140; 
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particle response times, figure 12 shows that the transfer of particulate-phase kinetic
energy from the MEPVF to the QBVD is smaller than at intermediate response
times, a consequence of the relatively low kinetic energy of the particles for large
relaxation times. In the intermediate range, τF

fp ∼ TL, the figure shows a maximum
in ε̃p , corresponding to the range for which there is the largest contribution of the
QBVD to the particulate-phase kinetic energy.

Analogous to single-phase turbulence, it is possible to define an Eulerian time scale
τ̃ p
e using the kinetic energy and dissipation rate of the MEPVF, τ̃ p

e = q̃2
p/ε̃p . Using

(6.11) and (6.12) and the time scale τ̃ p
e , the kinetic energy of the correlated part of the

particle velocity field and mean quasi-Brownian kinetic energy can be expressed as

q̃2
p =

η̃r

1 + 2η̃r

qfp, δq2
p =

1

2η̃r

q̃2
p. (6.13)

In (6.13), the ratio η̃r = τ̃ p
e /τF

fp is introduced and characterizes the dissipation time
scale of the MEPVF. As shown above (figure 9), with increases in the particle response
time the quasi-Brownian component of the particle velocity field becomes relatively
more dominant. The relations (6.13) show that as the contribution of the QBVD to
the particulate-phase kinetic energy increases, the time-scale ratio η̃r will decrease.
The quantity η̃r from the DNS and LES is shown in figure 13 and demonstrates that
time-scale ratio in fact decreases with increases in particle response time.

6.4. Spatial correlations and integral length scales of the MEPVF

The influence of particle inertia on the longitudinal and lateral spatial correlations
of the MEPVF is shown in figure 14. With increases in particle response time, the
figure shows increasing spatial correlation in the MEPVF. The lateral components
Gpp∗(r) in figure 14 show that for smaller particle response times the correlations
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possess negative loops, consistent with the fact that the motion of these particles
approaches that of fluid elements for which the negative loop is a consequence of
mass conservation for incompressible flows. From the correlations shown in figure 14,
including the fluid–particle spatial correlations not shown, it is possible to extract
the integral length scales characterizing the MEPVF. The longitudinal integral length
scales of the fluid–particle correlated motion, L̃fp

F , and of the MEPVF, L̃p
F , are defined
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classically as

L̃
fp
F =

1

3

1

qfp

∫ ∞

0

F̃ fp(r) dr, L̃
p
F =

2

3

1

q̃2
p

∫ ∞

0

F̃ pp(r) dr. (6.14)

The evolution of L̃
fp
F with particle inertia is depicted in figure 15. Also shown

are the DNS results from Sundaram & Collins (1999). The agreement between the
present calculations and those from Sundaram & Collins (1999) is adequate, both

demonstrating that the longitudinal integral length scale L̃
fp
F increases with particle
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Figure 16. Effect of particle inertia on the integral length-scale ratio of the MEPVF, LES
at ReL = 700. The dashed line represents the value of the corresponding integral length-scale
ratio of the fluid.

response time and indicating that the correlation between particle and fluid motions is
increasingly dominated by the larger-scale motions compared to the influence of the
smaller-scale fluid turbulent motions. This result is also consistent with the theoretical
predictions of the spectral response by Tchen (1947), showing that particle motion
will be less affected by the small-scale fluid motions for increasing particle relaxation
times and that particle motion will remain correlated with the fluid scales possessing
characteristic time scales larger than the response time of the particles.

The evolution of the longitudinal integral length scale of the MEPVF, L̃
p
F , is shown

in figure 15(b). The figure shows adequate agreement with the previous results of
Sundaram & Collins (1999), with L̃

p
F increasing with particle response time, and also

showing that the MEPVF is correlated over larger length scales compared to the
fluid turbulent motions. This feature is consistent with the fact that the energy of the
MEPVF decreases more rapidly at small scales than at large scales with increasing
inertia. This effect can be observed via the evolution of the particle–particle velocity

correlation function in figure 3, in which 3F̃ pp(r)/(2q2
p) does not appreciably increase

for large separations compared to the relatively strong reduction of the correlation

at small separations. This effect is also highlighted by the correlations F̃ pp(r) in
figure 14. It is important to emphasize that the increase of L̃

p
F with inertia is not in

contradiction with the molecular chaos limit where the velocities of separate particles
are not spatially correlated. The increase in L̃

p
F with inertia reflects more the decrease

of the particle–particle velocity correlation at small length scales compared to the
larger scales, rather than an increase of the particle–particle velocity correlation at
large length scales.

The ratio of the longitudinal to lateral integral length scales of the MEPVF is
shown in figure 16. Consistent with spatial correlations discussed above, for small
particle response times the ratio approaches the value of that characterizing the fluid,
which is only slightly above the expectedvalue L

f
F /L

f
G =2 for homogeneous isotropic
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LES at ReL = 700.

turbulence. Interestingly, the length scale ratio in figure 16 achieves a minimum for
values of the particle response time comparable to the fluid turbulence integral time
scale T

f @p
L , with the coarsest particles (largest response times) showing that the ratio

is again close to that characterizing the fluid flow.

6.5. ‘Taylor’ length scale of the MEPVF

Figures 3 and 14 show that, in addition to the increase of the integral length scale with
increasing particle inertia, there is also an increase in the length scale characterizing
the particle velocity correlations for small separations, i.e. the parabolic region near
the origin. To quantify such an effect the ‘Taylor’ length scale of the MEPVF is
defined using F pp ,

λ̃
p
F =

[
−3

2

1

q̃2
p

lim
r→0

1

2

d2F̃ pp(r)

dr2

]−0.5

. (6.15)

Note that a similar expression could be introduced for the length scale obtained from
the transverse correlation function. An alternate evaluation of λ̃

p
F that is employed

in the simulations is obtained following Laviéville (1997) by fitting using the bi-
exponential function proposed by Sawford (1991) for the Lagrangian correlation in
homogeneous isotropic turbulence,

3F̃ pp(r)

2q̃2
p

=
exp(−χ 2r/L) − χ2 exp(−r/L)

1 − χ2
, (6.16)

with L̃
p
F = L(1 + 1/χ2) and χ2 =

√
2L/λ̃

p
F . In the limiting case of fluid elements, (6.15)

and (6.16) yield values of λ
f
F ( = λ̃

p
F ) in good agreement with the expected value in

homogeneous isotropic turbulence, λf
F =

√
30νu′2/ε.

The influence of particle inertia on the ratio λ̃
p
F /λ

f
F , where λ

f
F is given by (6.16)

for fluid elements, in figure 17 shows that the ratio increases monotonically with
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increasing response time. The figure also shows that the increase in λ̃
p
F is larger

than that occurring in the integral length scale L̃
p
F . For example, for TL/τF

fp ≈ 0.2,

L̃
p
F /L

f
F ≈ 1.7 while λ̃

p
F /λ̃

f
F ≈ 4.6. This characterizes the relative increase of the

parabolic region of the correlation function of the MEPVF with particle inertia and
should be related to the modification of the energy spectrum in the intermediate-
wavenumber range.

7. Summary and conclusions
A study of the spatial characteristics of finite-inertia particle motion in gas-phase

turbulent flows is presented, using both an analytical treatment and subsequent valida-
tion and investigation via numerical simulations. The current contribution considers
in detail the subset of gas–particle flows in which the dispersed-phase density is much
larger than that of the carrier fluid. A theoretical approach based on application of
an average conditioned on a realization of the carrier fluid flow was used to develop
relations governing two contributions to the velocity of a finite-inertia particle. The
first contribution – the mesoscopic Eulerian particle velocity field – is a continuous
velocity field shared by all the particles of the system. The remaining contribution to
the particle velocity represents a random component – the quasi-Brownian velocity dis-
tribution – that accounts for the fact that a portion of the particle velocity corresponds
to a distribution that is not spatially correlated, which also implies that the quasi-
Brownian velocities of two neighbouring particles are not correlated. The QBVD is
identified with each particle and accounts for the fact that a portion of the particle
velocity obeys, partially, the assumption of molecular chaos, i.e. independence of
the velocities of neighbouring particles. In the present context, the assumption of
molecular chaos is restricted to the velocity distribution and not to the distribution
of particle positions and also does not imply a Gaussian distribution of the velocities.
In the gas–solid systems considered in this contribution, partitioning of the particle
velocity into the MEPVF and QBVD is dictated by particle inertia. It was shown that
the MEPVF accounts for all fluid–particle and particle–particle velocity correlations.
For low-inertia particles that follow the flow, the contribution of the QBVD is
not large and the particle velocities possess spatial correlations similar to that of
the underlying carrier flow. With increases in particle inertia, the spatial velocity
correlations are increasingly affected by the QBVD, especially for small separations.

The numerical simulations presented in the second part of the paper enabled a
posteriori validation of the theoretical relations developed using the MEF. Both DNS
and LES calculations of the fluid flow were used to assess the MEF and to gain some
insight into the application of LES for extraction of the two-point spatial velocity
correlations. The simulations showed good agreement in the statistics of the MEPVF
and QBVD obtained using the two simulation techniques, including the changes
with particle response time. These findings further support the application of LES
to gas–particle flows in regimes for which the particle response time is sufficiently
large compared to the smallest resolved time scales of the turbulent carrier flow, a
necessary condition to ensure that subgrid velocity fluctuations in the fluid have a
negligible effect on the statistics of the particulate phase. Similar findings have been
reported in statistically stationary homogeneous turbulence by Boivin et al. (2000)
and by Yamamoto et al. (2001) in particle-laden turbulent channel flow. In the present
context, that the spatial structure of the velocity field can be captured for response
times larger than the smallest resolved fluid time scales implies that application of
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LES for prediction and study of problems such as the relative dispersion between
particle pairs is worthwhile. It is further important to stress, however, that in other
regimes, e.g. very small particle response times, the errors introduced by transporting
the particulate phase by a filtered fluid velocity should be significant. More research
in this area is needed to extend the parameter space amenable to accurate prediction
using LES of the carrier phase for gas–solid turbulent flows.

While the existence of the MEPVF might be anticipated since particle motion is
derived by interaction with an underlying turbulent fluid flow that is characterized
by spatially correlated motions, the existence of the QBVD is more subtle. It is
possible to envision, for example, a reduction in the kinetic energy of the correlated
motions of the particulate phase occurring at the same rate as the reduction in the
total kinetic energy of the dispersed phase with increasing inertia so that the QBVD
is effectively zero. The simulations, however, demonstrate that the reduction in q̃2

p

occurs more rapidly than in q2
p with increasing particle response time, due to the

transfer of energy from the MEPVF to the QBVD as shown via analysis of the
transport equations of the kinetic energy and confirmed by the simulations. Other
recent evidence for the partitioning of the particle velocity into spatially correlated
and random-uncorrelated components is apparent in the measurements of the two-
point correlations of particle velocities in fully developed turbulent channel flow
reported by Khalitov & Longmire (2003), in which a discontinuity at the origin of
the correlations is observed. It is also interesting to note that the statistical model
of pair dispersion and preferential concentration recently presented by Zaichik &
Alipchenkov (2003) predicts a discontinuity in the spatial correlations of the particle
velocity.

The present contribution also has implications for calculation of particle-laden
turbulent flows using Eulerian-based approaches. A simple approach that has been
applied to derive the instantaneous Eulerian equations for the dispersed phase consists
of volume filtering the separate, local, and instantaneous equations for each phase and
then accounting for the interfacial jump conditions (Druzhinin & Elghobashi 1998).
Such an approach, however, is very restrictive since particle sizes and inter-particle
separations must be much smaller than the smallest length scales of the gas-phase
turbulent motion. In addition, other effects such as inter-particle collisions are not
easily included within such formulations.

Eulerian transport equations (6.3) and (6.4) that were developed in this work provide
a new formulation for the description of particulate-phase motion that is more general
than related efforts. Analysis of the transport equations and the simulations show
that the evolution of the mesoscopic particle velocity interacts with the QBVD via
a kinetic stress tensor that represents diffusive and pressure effects that account for
the fact that into any volume Ω with dimensions comparable to or smaller than
the smallest length scales of the turbulence, separate particles will possess different
velocities because of separate fluid interaction histories. Eulerian-based computational
approaches that attempt to resolve the time- and spatially dependent properties of the
particulate phase should account for the role of the QBVD in the Eulerian particle
velocity.

It should also be noted that while the transport equations for the mesoscopic field
have a similar structure to those which could be obtained by volume averaging,
the interpretations are not the same. Volume-averaged quantities represent the
characteristics of a particular property (e.g. the particle velocity) at length scales
larger than the averaging volume. Ensemble averages, on the other hand, do not
impose a characteristic length scale and a priori are valid at all length scales. Such
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an approach allows derivation of local, instantaneous equations for the dispersed
phase which can be coupled with DNS of the gaseous turbulence. In addition, volume
averaging of these equations may allow development of new simulation techniques,
corresponding to two-fluid LES.

Solution of the momentum equation for the MEPVF requires a model for the
kinetic stress and it is anticipated that the decomposition of the particle velocity
obtained via the MEF will simplify modelling strategies compared to those needed
in volume-averaged computations of dispersed-phase flows. Finally, in the context
of classical two-fluid modelling, the transport of the particle-phase kinetic energy
involves contributions from the MEPVF and QBVD. Since the MEPVF and QBVD
account for very different effects governing particle motion, it might be anticipated
that the MEF will improve modelling within classical two-fluid approaches.

The theoretical formalism developed in this manuscript can be extended to dilute
configurations that include inter-particle collisions, assuming that particle–particle
collisions do not directly induce spatial correlations in the particle velocity field. Ap-
plication of the MEF is formally possible to regimes in which inter-particle collisions
are included since it is based on a conditional average in terms of a given fluid flow
realization. Extension of the MEF to gas–solid flows in which the carrier-phase turbu-
lence is modified via momentum exchange with the particles is not obvious, but should
be possible. For small particle diameters in gas–solid regimes, i.e. with particle response
times comparable to the large eddies of the turbulent fluid flow, hydrodynamic inter-
actions between particles should also not induce velocity correlations because of the
wide separation of time scales between the particle response time and wake time scale.
Formally, extension of the MEF to regimes including two-way coupling could be pos-
sible via definition of a conditional average using a single realization of the large-scale
fluid flow, rather than the whole turbulent fluid velocity field as developed in this ma-
nuscript. The basis of such an approach would take advantage of the fact that for small
particle diameters, the direct modification of the fluid flow occurs at very small scales.
While the smallest scales over a large number of ensembles would differ from one
realization to the next, the large eddies of the fluid flow would exhibit negligible vari-
ation, in turn providing the condition on which to define properties of the particulate
phase.

The numerical simulations were performed on the NEC-SX5 supercomputer
using time made available by the Institut du Développement et des Resources en
Informatique Scientifique (IDRIS). P. F. and K.D. S. gratefully acknowledge the finan-
cial support from NASA Grant NCC-025.

Appendix. Analytical relations developed from the MEF
The averaging operator 〈·〉 is defined over a large number of two-phase flow

realizations,

〈·〉 = lim
Nf &p→∞

 1

Nf &p

∑
Nf &p

(·, Hf &p)

 (A 1)

where Nf &p represents the total number of two-phase flow realizations Hf &p . Particle
statistics can be derived from the p.d.f. f (1)

p (cf. (2.1)) as well as from the normalized

version F(1)
p (cf. (2.4)). In the following, statistical quantities are developed with

respect to the normalized p.d.f., i.e. based on averaging over a very large number of
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realizations of the trajectory of any given particle m of the system. The corresponding
averaging operator is then expressed as〈

· δ
(
x − x(m)

p

)〉〈
δ
(
x − x(m)

p

)〉 =
〈
· |x = x(m)

p

〉
, (A 2)

where the right-hand side of (A 2) is a shorthand to reinforce the dependence of the
average on the particle position.

In dilute systems, the fluid flow can be assumed to be undisturbed by the particle
presence and it is possible to consider formally a very large number Np of realizations
of the particulate system for a given fluid flow realization Hf . Each particle
realization Hp will differ by slightly altering the particle initial conditions, possible
in the current configuration of statistically stationary, homogeneous and isotropic
turbulence. Statistical properties of the particulate phase can then be defined via
introduction of averages conditioned on a given fluid-flow realization,

〈·|Hf 〉 = lim
Np→∞

 1

Np

∑
Np

(·, Hp|Hf )

 , (A 3)

from which follows

〈·〉 = lim
Nf →∞

 1

Nf

∑
Nf

〈·|Hf 〉

 . (A 4)

For ease of notation, the relation (A 4) is written more compactly as,

〈·〉 = {〈·|Hf 〉}
f

, with {·}f = lim
Nf →∞

 1

Nf

∑
Nf

(·, Hf )

 .

According to the idempotence (identity) property of the averaging operator, i.e.
〈〈·〉〉 = 〈·〉, the following relation holds:

〈〈·|Hf 〉〉 = {〈〈·|Hf 〉|Hf 〉}
f

= {〈·|Hf 〉}
f

= 〈·〉. (A 5)

A.1. Relations between one-point statistics

In the MEF, the velocity ṽp is defined as

ṽp(x, t, Hf ) =

〈
v(m)

p (t)δ
(
x − x(m)

p

)∣∣Hf

〉〈
δ
(
x − x(m)

p

)∣∣Hf

〉
=

〈
v(m)

p (t)|x = x(m)
p ; Hf

〉
,

where the second line is again a more compact representation of the average, also
indicating the dependence on Hf . The velocities ṽp and δvp are related to the velocity
of particle m as

v(m)
p (t) = ṽp

(
x(m)

p (t), t, Hf

)
+ δv(m)

p (t).

Using (A 5), the following relations can be derived for the statistics of the velocities
vp , ṽp , and δvp . For the mean particle velocity Vp(x, t) = 〈v(m)

p (t)|x = x(m)
p (t)〉,

Vp(x, t) =
〈
ṽp(x, t, Hf ) + δv(m)

p (t)|x = x(m)
p (t)

〉
=

〈
ṽp(x, t, Hf )|x = x(m)

p (t)
〉

+
〈
δv(m)

p (t)|x = x(m)
p (t)

〉
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=
〈
ṽp(x, t, Hf )|x = x(m)

p (t)
〉

+
〈〈

δv(m)
p (t)|x = x(m)

p (t); Hf

〉〉
=

〈
ṽp(x, t, Hf )|x = x(m)

p (t)
〉
, (A 6)

since the average 〈δv(m)
p (t)|x = x(m)

p (t); Hf 〉 ≡ 0. Furthermore, the last line of (A 6) can
be simplified using the average (A 2) and property (A 5),〈

ṽp(x, t, Hf )|x = x(m)
p (t)

〉
=

〈
ṽp(x, t, Hf )δ

(
x − x(m)

p (t)
)〉〈

δ
(
x − x(m)

p (t)
)〉

=

〈〈
ṽp(x, t, Hf )δ

(
x − x(m)

p (t)
)
|Hf

〉〉〈〈
δ
(
x − x(m)

p (t)
)
|Hf

〉〉
=

〈
ṽp(x, t, Hf )

〈
δ
(
x − x(m)

p (t)
)
|Hf

〉〉〈〈
δ
(
x − x(m)

p (t)
)
|Hf

〉〉
=

〈ṽp(x, t, Hf )ñp(x, t, Hf )〉
〈ñp(x, t, Hf )〉 = Ṽ p(x, t), (A 7)

where Ṽ p is the density-weighted mean velocity. The relations (A 6) and (A 7)
show that the mean particle velocity and density-weighted value are identical. The
fluctuating velocity of any particle can then be expressed as

v′(m)
p (t) = v(m)

p (t) − Vp

(
x(m)

p (t), t
)

= ṽp

(
x(m)

p (t), t, Hf

)
+ δv(m)

p (t) − V p

(
x(m)

p (t), t
)

= ṽ′
p

(
x(m)

p (t), t, Hf

)
+ δv(m)

p (t). (A 8)

The total turbulent kinetic energy of the particulate phase can be expressed in terms
of ṽ′

p and δvp (note that the dependence of these quantities on x, t and Hf is not
explicitly indicated in the following relations):

q2
p(x, t) = 1

2

〈
v′(m)

p,i
2
∣∣x = x(m)

p

〉
= 1

2

〈(
ṽ′

p,i + δv
(m)
p,i

)2∣∣x = x(m)
p

〉
= 1

2

〈
ṽ′

p,i
2
∣∣x = x(m)

p

〉
+

〈
ṽ′

p,iδv
(m)
p,i

∣∣x = x(m)
p

〉
+ 1

2

〈
δv

(m)
p,i

2
∣∣x = x(m)

p

〉
The second term on the right-hand side can be simplified,〈

ṽ′
p,iδv

(m)
p,i

∣∣x = x(m)
p

〉
=

〈〈
ṽ′

p,iδv
(m)
p,i

∣∣x = x(m)
p ; Hf

〉〉
=

〈
ṽ′

p,i

〈
δv

(m)
p,i

∣∣x = x(m)
p ; Hf

〉〉
= 0,

and thus the total turbulent kinetic energy of the particles can be expressed as

q2
p(x, t) = q̃2

p(x, t) + δq2
p(x, t) (A 9)

where,

q̃2
p(x, t) =

1

2

〈
ṽ′2

p,i(x, t, Hf )
∣∣x = x(m)

p (t)
〉

=
1

2

〈
ñp(x, t, Hf )ṽ′2

p,i(x, t, Hf )
〉

〈ñp(x, t, Hf )〉 (A 10)

in which the second line above follows in the same way as that leading to (A 7), and

δq2
p(x, t) = 1

2

〈
δv

(m)
p,i

2(t)
∣∣x = x(m)

p (t)
〉
. (A 11)
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The fluid–particle velocity covariance is expressed as

qfp(x, t) =
〈
u′

i ṽ
′
p,i

∣∣x = x(m)
p

〉
+

〈
u′

iδv
(m)
p,i

∣∣x = x(m)
p

〉
.

Furthermore, 〈
u′

iδv
(m)
p,j

∣∣x = x(m)
p

〉
=

〈
ui

〈
δv

(m)
p,j

∣∣x = x(m)
p ; Hf

〉〉
=0.

The above shows that the velocity δvp of any particle is not correlated with the fluid
velocity at the particle position. This in turn shows that the instantaneous Eulerian
particle velocity ṽp takes completely into account the fluid–particle one-point velocity
correlations, i.e.

qfp(x, t) = q̃fp(x, t). (A 12)

Using the same approach, it can be shown that the fluid kinetic energy sampled along
particle trajectories satisfies an analogous relation, i.e.

q2
f @p(x, t) = q̃2

f @p(x, t). (A 13)

A.2. Relations between two-point statistics

Statistical relationships for the two-point Eulerian statistics of the particulate phase
derived from consideration of the centres of two different particles m and n are
developed in this subsection. The radial distribution function gpp takes the form

gpp(x, x + r, t) =

〈
δ
(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉〈
δ
(
x − x(m)

p

)〉〈
δ
(
x + r − x(n)

p

)〉
=

〈〈
δ
(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉〈〈
δ
(
x − x(m)

p

)∣∣Hf

〉〉〈〈
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉
=

〈〈
δ
(
x − x(m)

p

)∣∣Hf

〉〈
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉〈〈
δ
(
x − x(m)

p

)∣∣Hf

〉〉〈〈
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉
=

〈ñp(x, t, Hf )ñp(x + r, t, Hf )〉
〈ñp(x, t, Hf )〉〈ñp(x + r, t, Hf )〉 . (A 14)

The particle–particle velocity correlation can be written as

R
pp
ij (x, x + r, t) =

〈
v′(m)

p,i v
′(n)
p,j

∣∣x = x(m)
p ; x + r = x(n)

p

〉
=

〈
v′(m)

p,i v
′(n)
p,j δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉〈
δ
(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉 . (A 15)

Using the decomposition (A 8), the correlations can be re-written as

R
pp
ij (x, x + r)

=
1〈

δ
(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉[〈
ṽ′

p,i(x)ṽ′
p,j (x + r)δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉
+

〈
ṽ′

p,i(x)δv(n)
p,j δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉
+

〈
δv

(m)
p,i ṽ

′
p,j (x + r)δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉
+

〈
δv

(m)
p,i δv

(n)
p,j δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉]
. (A 16)
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Note that the dependence on t and Hf is not explicitly indicated in the above. The
first term on the right-hand side above can be expressed as〈

ṽ′
p,i(x)ṽ′

p,j (x + r)δ
(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉
=

〈〈
ṽ′

p,i(x)ṽ′
p,j (x + r)δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉
=

〈
ṽ′

p,i(x)ṽ′
p,j (x + r)

〈
δ
(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉
=

〈
ṽ′

p,i(x)ṽ′
p,j (x + r)

〈
δ
(
x − x(m)

p

)∣∣Hf

〉〈
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉
.

The second term on the right-hand side can be expressed as〈
ṽ′

p,i(x)δv(n)
p,j δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)〉
=

〈〈
ṽ′

p,i(x)δv(n)
p,j δ

(
x − x(m)

p

)
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉
=

〈
ṽ′

p,i(x)
〈
δ
(
x − x(m)

p

)
|Hf

〉〈
δv

(n)
p,j δ

(
x + r − x(n)

p

)∣∣Hf

〉〉
= 0. (A 17)

Furthermore, using the same approach it can also be shown that the third and fourth
terms on the right-hand side of (A 16) are identically zero. Consequently, the following
relation is obtained:

R
pp
ij (x, x + r) =

〈
ṽ′

p,i(x)ṽ′
p,j (x + r)

〈
δ
(
x − x(m)

p

)∣∣Hf

〉〈
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉〈〈
δ
(
x − x(m)

p

)∣∣Hf

〉〈
δ
(
x + r − x(n)

p

)∣∣Hf

〉〉
=

〈
ñp(x)ṽp(x)ñp(x + r)ṽp(x + r)

〉〈
ñp(x)ñp(x + r)

〉
= R̃

pp
ij (x, x + r). (A 18)

The same approach yields analogous relations for the fluid–particle velocity correla-

tions, R
fp
ij and R̃

fp
ij and fluid–fluid velocity correlations R

ff
ij and R̃

ff
ij .
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